

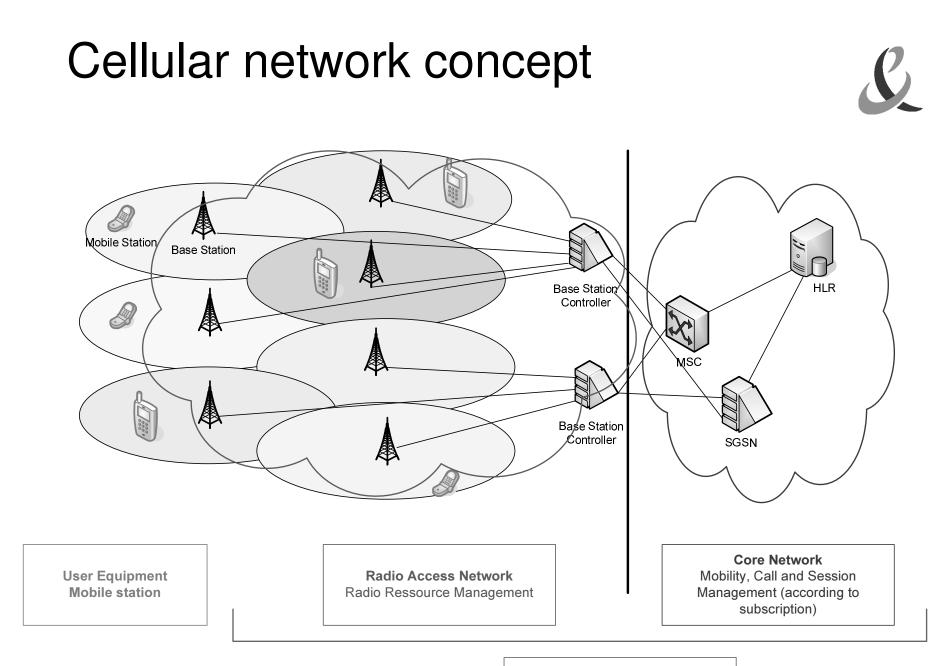
Mobile Networks : Introduction

History overview

- → 80's : analog networks
 - Proprietary or national solutions :
 - ✓ No compatibility
 - NMT (Nordic Mobile Telephone) in Sweden, adapted in France for SFR
 Radiocom 2000 for France Telecom
 - Lack of confidentiality
 - Very expensive for the user
 - Very low penetration
- 79:900 Mhz is reserved \rightarrow
- 82 : Creation of "Groupe Spécial Mobile" within the European Conference of Postal and **→ Telecommunications Administrations (CEPT)**
- → 88-89 : First publication of GSM recommendations (draft).
- 90-91 : The GSM Phase 1 recommendations are frozen \rightarrow
- 92 : First GSM networks in operation →
- 94 : GSM Phase 2 recommendations publication →
- 97 : GPRS \rightarrow
 - EDGE
- → 2000 : UMTS
 - 2005 : HSDPA-HSUPA
- → 2010 ? : LTE/SAE

Cellular network concepts (1/2)

→ Network composed :


- Base Stations
- Base Station are aggregated on Controllers
- Controllers are connected to Core Network nodes
- → A cell is defined as the area where a Mobile Station is able to communicate with the Base Station
 - Cells are grouped in "registration areas"
 - \checkmark LA : location area
 - \checkmark RA : routing area
- → Mobility is supported between cells
 - In Idle Mode (no active call) : Roaming
 - In Connected Mode (during a call or session) : Handover

Cellular network concepts (2/2)

→Radio Access Network and Core Network

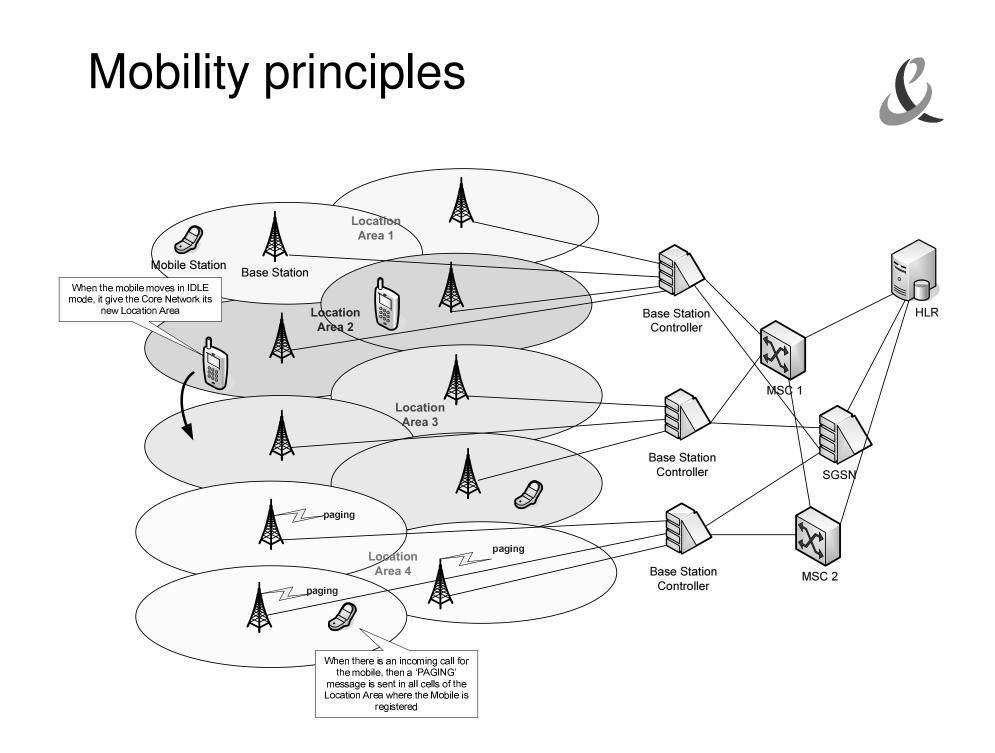
- RAN : Radio ressource management
- CN : User Management & Service Delivery (Location Update, Authentication, Calls, PS sessions, SMS, ...)
- →SIM : Subscriber Identity Module
 - Smart card put in the mobile handset
 - Used for authentication, and <u>user subscription is</u> <u>linked to the SIM</u> and not to the terminal

Mobile Network Infrastructure

Mobile networks constraints

- →Need to cope with interferences
- →Shared ressources between users
 - Need to manage multiple access
 TDMA, CDMA
- → Radio signal can be intercepted (broadcast)
 - Need for confidentiality
- →Radio resources are rare and expensive
 - Need to save these resources
 - ✓ Modulation & coding
 - ✓ Need to limit bandwith
 - ➤ Signalling
 - Codecs (narrowband codecs)
- → Planification required for antenna deployment
 - ✓ For neighbour cell differentiation
 - ✓ For mobility support

Mobility Principles



→ Cells are grouped into Location Area

➔ The network know the cell of the mobile station when it is active, otherwise the network knows the Location Area where the MS is camping

➔ In IDLE mode, the mobile station informs the network when it changes of Location Area

- When there is an incoming call or SMS, the PAGING procedure is performed in all cells of the Location Area where the MS was registered
- The MS also 'refreshes' its location information periodically
- ➔ In CONNECTED mode, Handover is controlled by the network
 - The network asks the MS to measure neighbour cells
 - In function of measures from the MS (sent to the network), the network initiates the handover towards a more suitable cell

GSM (1/2)

→ Global System for Mobile Communications

- Initially "Groupe Spécial Mobile"
- Called 2G : 2nd Generation
- First 'global' system
 - ✓ All system standardized (not only radio interface)
 - ✓ Possibility to roam in other countries (interconnection or networks)

→GSM radio characteristics

- Access technology : TDMA (Time Division Multiple Access)
- Frequency bands : 900 MHz
 - ✓ 25 MHz bands : 895-915 (UL) & 935-960 (DL)
 - \checkmark Space between carriers : 200 kHz
- Other band 1800 MHz (initially called DCS)
 - ✓ Bands : 1710-1785 / 1805-1880
 - ✓ Smaller cells than 900 cells
- GSM access network : BSS (Base Station Subsystem)
 - ✓ BTS : Base Transceiver Station
 - ✓ BSC : Base Station Controller

GSM (2/2)

→GSM "Phase 2+"

- Interoperability between GSM 900 and DCS 1800
- Pro-active SIM
- New Intelligent Network services

→Services :

- Teleservices
 - ✓ Voice
 - ✓ Emergency calls

✓ Fax

- ✓ SMS (Short Message Service)
- Supplementary Services (CLIP, CLIR, CH, CW, Call Forwarding...)

Bearer Services

- ✓ CSD (Circuit Switched Data) : up to 14,4 kbit/s
- ✓ HSCSD (High Speed Circuit Switched Data) : <u>N</u> x 14,4

GPRS

- → General Packet Radio Service
 - 3GPP Release 97
 - Sometimes called 2,5G
- ➔ Same Access Network as GSM
- → New Core network for offering data services (IP services)
- ➔ In a cell, <u>ressources are shared</u> between different users having an active GPRS session
- → EDGE (Enhanced Data rate for GSM Evolution)
 - New modulation, for higher data rates

➔ GPRS Services :

- Packet Data Connectivity: IP
 - ✓ GPRS Data rates :
 - > In theory : up to 170 kbit/s at radio level, 115 kbit/s at application level
 - In reality : 40-60 kbit/s at application level in market MS
 - ✓ E-GPRS Data rates :
 - > In theory : up to 384 kbit/s in optimal radio conditions
 - > In reality : about 200 kbit/s at application level in market MS
- Short-Message support

UMTS (1/2)

- ➔ Universal Mobile Telecommunications System
 - Called 3G: 3rd Generation
 - Standardization finished in 1999-2000
 - First UMTS equipments in 2002
- Network Elements in UTRAN (UMTS Terrestrial Radio Access Network)
 - NodeB (3G BTS)
 - RNC : Radio Network Controller
 - \checkmark New interface between RNC : IuR
- ➔ UTRAN specificities
 - Based on W-CDMA (WideBand Code Division Multiple Access)
 - Two modes of multiplexing on radio interface for UMTS : <u>FDD</u> & TDD (Frequency / Time Division Duplex)
 - Macro diversity : the UE can 'talk' to multiple NodesB
 - Soft Handover (no transmission interruption during handover)

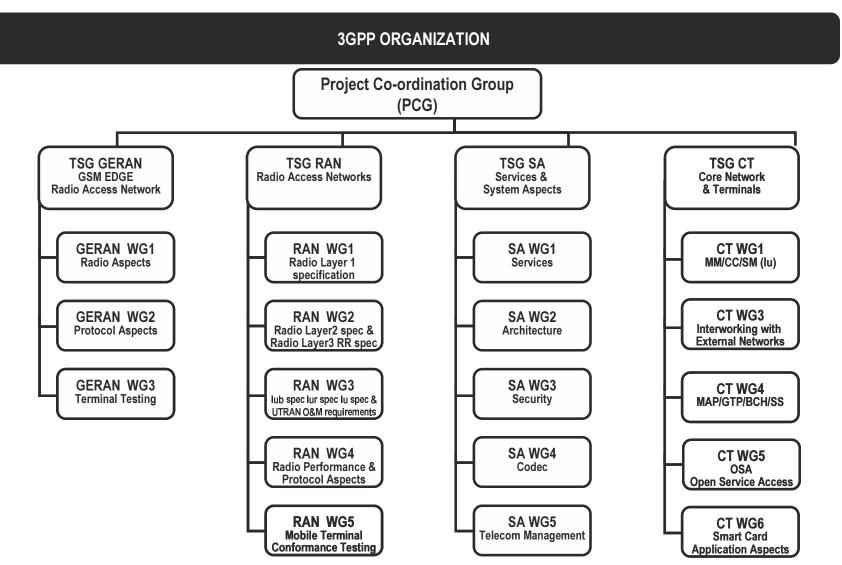
UMTS (2/2)

→GSM and GPRS Core Network are re-used : 2 domains for UMTS

- UMTS-CS (circuit switched) CN
- UMTS-PS (packet switched) CN
- → Services : improvements from GSM & GPRS
 - Support of video calls (CS mode)
 - Simultaneous access to the CS and PS domains
 - Quality of Service
 - ✓ 4 classes : Conversational, Streaming, Interactive, Background
 - Higher data rates

✓ Up to 384 kbps in FDD

✓ Up to 2 Mbps in TDD


→HSDPA/HSUPA

- Different modulation and scheduling on radio interface
- Higher data rates : up to 14,4 Mbps in DL, 5,8 Mbps in UL

3GPP Standardisation

→ 3GPP centralizes all standardisation of mobile networks

References

➔ Réseaux GSM

- X. Lagrange, P. Godlewski, S. Tabbane
- Editions Hermes Science

→UMTS : les origines, l'architecture, la norme

- P. Lescuyer
- Editions Dunod
- →3GPP web site
 - http://www.3gpp.org