
$�3HUIRUPDQFH�6WXG\�RI�7&3�YDULDQWV��7DKRH��5HQR��1HZ�5HQR��6$&.��
9HJDV��DQG�:HVWZRRG��LQ�WHUPV�RI�(QHUJ\�&RQVXPSWLRQ�DQG�$YHUDJH�

*RRGSXW�ZLWKLQ�D�6WDWLF�$G�+RF�(QYLURQPHQW�

Alaa Seddik-Ghaleb*, Yacine Ghamri-Doudane*, and Sidi-Mohammed Senouci**

*Networks and Multimedia Systems Research Group (LRSM),
Computer Engineering Institute (IIE-CNAM)

18 Allée Jean Rostand, 91025 Evry Cedex, France.
seddik@iie.cnam.fr , ghamri@iie.cnam.fr

** France Telecom R&D

2 Av. Pierre Marzin, 22307, Lannion, France.
sidimohammed.senouci@francetelecom.com

$EVWUDFW²�7&3�ZDV�PDLQO\�GHYHORSHG�WR�EH�
LPSOHPHQWHG�ZLWKLQ�ZLUHG�QHWZRUNV�ZKHUH�WKH�
PDLQ� FDXVH� IRU� SDFNHW� ORVV� LV� QHWZRUN�
FRQJHVWLRQ�� &RQYHUVHO\�� LQ� ZLUHOHVV� DG� KRF�
QHWZRUNV�WKHUH�DUH�PDQ\�RWKHU�UHDVRQV�WR�ORVH�
SDFNHWV� �VXFK� DV� IDGLQJ�� LQWHUIHUHQFHV�� PXOWL�
SDWK�URXWLQJ�«���,Q�IURQW�RI�WKHVH�YDULRXV�ORVV�
W\SHV��7&3�UHDFWV�E\� WULJJHULQJ� LWV� FRQJHVWLRQ�
FRQWURO� DOJRULWKP� �L�H�� FRQVLGHULQJ� DOO� WKHVH�
ORVVHV�DV�GXH�WR�FRQJHVWLRQV���7KLV�UHDFWLRQ�FDQ�
EH� FRQVLGHUHG� DV� DQ� DJJUHVVLYH� EHKDYLRU� LQ�
VRPH� FDVHV�� ZKLFK� PD\� OHDG� WR� QHWZRUN�
SHUIRUPDQFH�GHJUDGDWLRQ��2Q�WKH�RWKHU�KDQG��
VLQFH�DG�KRF�QRGHV�DUH�EDWWHU\�RSHUDWHG�� WKH\�
QHHG� WR� EH� HQHUJ\� FRQVHUYLQJ� VR� WKDW� EDWWHU\�
OLIH� LV�PD[LPL]HG��7KXV�� LQ�RXU�ZRUN�ZH� WULHG�
WR� ILQG� WKH� HIIHFW� RI�7&3�YDULDQWV¶� FRQJHVWLRQ�
FRQWURO� DOJRULWKPV� RQ� 7&3� SHUIRUPDQFH�
�HQHUJ\�FRQVXPSWLRQ�DQG�DYHUDJH�JRRGSXW � ��LQ�
DG� KRF� QHWZRUNV�� 2EYLRXVO\�� WKLV� VWXG\� WDNHV�
LQWR� FRQVLGHUDWLRQV� GLIIHUHQW� ORVV� W\SHV� WKDW�
PD\�RFFXU� LQ�DG�KRF� HQYLURQPHQW� LQ�RUGHU� WR�
ILQG� WKH� EHVW� DGDSWHG� 7&3� YDULDQW� IRU� VXFK�
QHWZRUNV��7KH�UHVXOWV�RI�RXU�FXUUHQW�ZRUN�DUH�
LQWHQGHG� WR� EH� XVHG� DV� D� JXLGHOLQH� IRU� WKH�
GHVLJQ� RI� VSHFLILF� 7&3� HQKDQFHPHQWV� IRU� DG�
KRF�QHWZRUNV����
,�, ���������
	�����
���� �

TCP has gained its place as the most popular
transmission protocol due to its wide
compatibility to almost all today’s applications.
However, TCP as it exists nowadays may not
well fit to ad hoc networks. It was designed for
wired networks where the medium Bit Error Rate
(BER) is very low and network congestion is the
primary cause of packet loss. Unlike wired links,
wireless radio channels are affected by many
factors that may lead to high levels of BER.
Additionally, TCP does not have the ability to
recognize whether packet loss is due to network

1 The amount of data correctly received during a given
time of period.

congestion, channel errors, or link failure. In this
paper, we focus our attention on studying the
impact of wireless ad hoc environment
characteristics on the energy efficiency of the six
major TCP variants (Tahoe, Reno, New-Reno,
SACK, Vegas, and WestwoodNR) as well as the
obtained goodput.

The remainder of this paper is organized as
follows: after presenting the motivation behind
our current work in section 2, section 3 presents
each TCP variant as well as their performances in
term of energy consumption and average
goodput. Finally, we summarize the main results
of this work and give some ideas for future work.

,,�0 ����
��
����
���� �
In the last few years, many researchers have

studied TCP performance in terms of energy
consumption and average goodput within
wireless mobile networks [1][2][3]. Due to the
specific issues related to wireless ad hoc
networks, it is expected that the performance of
TCP will be affected considerably in these
environments. In wireless ad hoc networks,
reasons for packet losses are more sophisticated
than traditional wireless (cellular) networks.
Those reasons include the unpredictable wireless
channel characteristics due to fading and
interference (implying a high BER), the
vulnerable shared media access due to random
access collision, the hidden and exposed terminal
problems, path asymmetry, multi-path routing,
and so on. Undoubtedly, all of these pose great
challenges on TCP to provide reliable end-to-end
communications in such environment.

Many research projects were specifically
interested in studying the TCP performances
(energy consumption and/or goodput) within such
environments [3][4]. However, none of them
compared more than three TCP variants over a
widest set of realistic scenarios. In this paper, we
aim to make a clear comparison between the most
common TCP variants. This comparative study

takes place under different error loss situations.
We take into consideration wireless channel
effects and link failure cases. We make our
simulations using a large number of nodes, in
order to realize the effect of losing a non-adjacent
node on energy consumption of the other nodes
in the network.

The aim of this study is to help understanding
the impact of the different TCP loss recovery
mechanisms on TCP performance in ad hoc
environments. Thus, obtained results can be used
as a guideline for efficient design of new specific
TCP enhancements for ad hoc networks.

,,,�& �������
�
����
���� 6 ��	
�
� ��� 7&3
3 �������������
������
���� 6 ���
��
�� $ ����� �
1 ���"!#����$ �

In this section we study the performances of
different TCP variants in terms of energy
consumption and average goodput within a static
ad hoc network. We study the performances
regarding two common situations: (i) the link loss
scenario and (ii) different BER level scenarios.

Note that, for each TCP variant a short
overview of its loss recovery mechanisms. For
more details on the behavior of these variants, the
reader can refer to the corresponding references.

,,,��� 6LPXODWLRQ�6FHQDULRV�DQG�7RSRORJLHV�
Our simulations are realized using the

Network Simulator version 2 (NS-2) [6]. Each
simulation consists of a network of 20 nodes
confined in a (670 x 670) m² area. These nodes
are randomly positioned in the simulation area.
14 TCP connections were established (ftp traffic
used with a packet size of 512 bytes) between the
nodes. The source-destination pairs for FTP
sessions were chosen randomly. They are shown
in Figure 1. The simulation time is set to 400
seconds. The initial battery capacity of each node
is 10 joules. This initial energy is reduced
progressively by data transmission, reception,
retransmission, and forwarding. We consider the
simple case where the transmission and reception
of a packet consumes a fixed amount of energy
from the node’s battery. When this initial energy
reaches zero joules, the corresponding node
cannot take part anymore in the communication,
and is regarded as dead. Note that a node death
can lead to routes reorganizations in the network.
In our simulations, we consider the use of the
Optimized Link State Routing (OLSR) [7] as
routing protocol. All nodes communicate with
identical wireless radios using the standard MAC
802.11 which have a bandwidth of 2Mbps and a
radio propagation range of 250 meters.

We use different loss model scenarios with
several values of BER (5%, 10%, and 15%) and a
lost link (LL) scenario. In this work, we study

three TCP performance parameters: the first one
is the energy consumed in transmission,
reception, forwarding and retransmission of
packets. This energy is calculated proportionally
to the amount of received data. Thus, it is defined
as energy consumed per received bit. The second
one is the average connection duration of TCP
sessions. Note that, it was demonstrated in the
literature [8] that this connection duration is
proportional to the energy consumed at each node
listening to the radio channel plus that consumed
to execute the recovery mechanisms associated to
each TCP (Timeouts, CWND threshold
adjustments, etc.). This sum is called idle energy
in the following. The third parameter studied is
the average goodput of TCP.

Figure 1 Network topology and FTP sessions.

TCP Energy Consumption per Rx Bit

3

4

5

6

7

8

9

10

11

12

13

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack TCP-
WestwoodNR

TCP-Vegas

% &�'�()+*, - . /10

5%

10%
15%

LL

Figure 2 Comparison of TCP energy consumption per
received bit.

1

2

12

9

8

16

7

6

11

 17

14

4

3

15

5

13

10

19

0

18

0

TCP Average Connection Time

120

140

160

180

200

220

240

260

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack TCP-
WestwoodNR

TCP-Vegas

2)�3 &14 5�*

5%

10%

15%

LL

Figure 3 Comparison of TCP sessions Average connection

time.

TCP Average Goodput

0

10

20

30

40

50

60

70

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack TCP-
WestwoodNR

TCP-Vegas

6+7+8+*

5%

10%

15%

LL

Figure 4 Comparison of TCP Average Goodput.

,,,��� 7&3�7DKRH�3HUIRUPDQFH�

,,,���D� 2YHUYLHZ�
TCP Tahoe implementation added a number of

new algorithms and refinements to earlier
implementations. It is the first TCP variant that
incorporates congestion control mechanisms:
Slow-Start, Congestion Avoidance, and Fast
Retransmit [5][9]. The goal of slow-start and
congestion avoidance is to keep the congestion
window2 size around optimal size as much as
possible. Slow-start increases the congestion
window (cwnd) size rapidly to reach maximum
safety transfer rate (SSThresold) as fast as
possible and congestion avoidance increases the
cwnd slowly to avoid packet losses as long as
possible. If a packet is not acknowledged after a
predefined timeout, Retransmission TimeOut
(RTO), it is regarded as lost and is retransmitted.
On the other hand, at the reception of three
duplicate acknowledgments, the first
unacknowledged packet is also considered as lost.
In this case, the Fast Retransmit algorithm is in
charge of retransmitting the lost packet without
waiting for the RTO. This latest speeds-up the
lost packet retransmission. Finally, note that in
both situations, the packet retransmission is
followed by a reduction of both the SSThresh, to

2 Maximum amount of data that can be sent out over a
connection without being acknowledged.

cwnd/2, and the cwnd to its minimum. The slow
start phase is then triggered.

,,,���E� 3HUIRUPDQFHV�5HJDUGLQJ�WR�/LQN�
/RVVHV�

From Figure 2, we can conclude that our results
confirm the results obtained in [10]: TCP Tahoe
performs better in the case of burst errors (lost
link) than the case of random BER (as can be
seen in Figure 2). Indeed, each time a lost link in
the network breaks a route handling a TCP flow,
this latter experiences several consecutive packet
losses (burst losses). TCP Tahoe saves energy
consumption per received bit because it backs off
in the presence of burst losses. This confirms the
fact that: “at burst error case or when there is a
lost link in the network, it is better to stop data
transmission until a new route is found”.

In [10] the authors leave the important issue of
the energy efficiency tradeoffs involved when
backing off increases delays, and hence the
overall connection time. Figure 3 can explain the
effect of “backing off” algorithm of TCP Tahoe
on the average connection time and hence on the
idle energy consumption of TCP. Although that
backing off saves energy consumed per received
bit in the burst error case, we have found that it
introduces an extra delay in the network. And as
mentioned before, the longer the connection time,
the greater the total energy consumed due to the
idle energy consumption at the node [8]. At idle
times, although that the node does not send data,
it will listen to the radio waves in order to receive
the acknowledgement. There is also time
consumption at the CPU unit in which it executes
the used TCP algorithms (Timeouts, CWND
threshold adjustments, etc.). Figure 4 illustrates
that in terms of average goodput, TCP Tahoe has
a good performance the event of a lost link
compared to BER cases. This is due to backing
off algorithm, as the connection stays inactive
during this time. This action saves unnecessary
retransmissions until a new route is found. Then,
inversely to the BER case, where it triggers its
congestion control algorithm each time there is a
lost packet, TCP Tahoe will enter the Slow-Start
phase only once. As a result, the transmission rate
does not stay low leading to a somewhat good
utilization of bandwidth.

,,,���F� 3HUIRUPDQFHV�5HJDUGLQJ�WR�'LIIHUHQW�
/HYHOV�RI�%(5�

Figure 2 shows that at random loss BER, we
notice that the performance of TCP Tahoe
degrades in term of energy consumption per each
received bit when the channel error rate
increases, which is an expected result. This is due
to the fact that TCP will trigger the congestion
control algorithm more frequently (the higher the

BER, the more frequently TCP triggers its
congestion control algorithm). This leads, also, to
important decrease in the efficiency of the
bandwidth utilization (as can be verified from
Figure 4). Frequent triggering of TCP Tahoe’s
congestion control means entering the Slow-Start
phase in succession. This will reduce the
transmission rate many times (i.e. the
transmission rate stays low leading to under
utilization of bandwidth). We must mention here
that Slow-Start algorithm considers all packets in
the same window that caused the Slow-Start, as
losses.

As a consequence, even that TCP Tahoe saves
energy due to its backing off algorithm in lost
link case; it does not show a good performance
facing different BER levels.

,,,��� 7&3�5HQR�3HUIRUPDQFH�

,,,���D� 2YHUYLHZ�
The congestion control mechanisms of TCP

Reno, the most popular TCP implementation,
retains the enhancements incorporated into TCP
Tahoe, but modifies the Fast Retransmit
operation to include Fast Recovery [11]. The
Slow-Start and the Congestion Avoidance
algorithms are used by a TCP Reno sender to
control the amount of data injected into the
network while the Fast Retransmit and the Fast
Recovery are used to recover from packet losses
without the need for RTOs [12]. Fast Recovery
algorithm reacts after a packet loss discovered by
a three duplicate ACKs. Then it halves the
congestion window instead of decreasing it to
minimum as in TCP Tahoe.

,,,���E� 3HUIRUPDQFHV�5HJDUGLQJ�WR�/LQN�
/RVVHV�

The simulation results depicted by Figure 2
proves that in the case of burst packet loss (lost
link), TCP Tahoe may have lower energy
consumption per received bit, since it backs off in
front of the burst errors, which may increase the
chance of successful retransmission after that. For
example, if the burst packet loss is due to a bad
connection or a link failure, backing off for a
while, will help avoiding the unnecessary
retransmissions. As can be seen in Figure 4, TCP
Tahoe has better goodput than TCP Reno in the
case of lost link. On the other hand, Figure 3
shows that TCP Reno has a long average
connection time compared to almost all other
TCP variants especially at high BER and link loss
cases.

 All these results are due to the fact that TCP
Reno is unable to recover from more than one
packet loss at a time (i.e. is unable to recover
from consecutive losses). When there are many
packets lost within a transmission window, TCP

Reno decreases its transmission rate by half each
time there is a lost packet. Then after two trials of
loss recovery, TCP Reno reaches almost the same
transmission rate as in TCP Tahoe. After three
trials of recovery, TCP Reno has to wait to RTO
expiration that leads to backing off and entering
slow-start phase (exactly as in TCP Tahoe). The
above process leads to more time consumption in
the first two trials of recovery, while that TCP
Tahoe is backing off and goes through slow-start
directly. Furthermore, there is an extra energy
consumed in the two first trials which do not
reach the destination due to the lost link (Figure
2). This led us to conclude that TCP Reno will
probably consume more total energy than TCP
Tahoe without leading to better goodput (Figure
4).

,,,���F� 3HUIRUPDQFHV�5HJDUGLQJ�WR�'LIIHUHQW�
/HYHOV�RI�%(5�

Figure 2 demonstrates that the energy
consumption of TCP Reno increases with BER
level as it can not manage more than one lost
packet per window of data (as explained earlier).
TCP Reno encounters several problems with
multiple packet losses in a window of data. This
usually happens when invoking fast retransmit
and fast recovery in succession. Additionally, as
expected, Figure 4 shows that the average
goodput of TCP Reno is getting worse when the
BER increases. Invoking loss recovery
algorithms several times leads to multiplicative
decreases of cwnd and SSThresh, which in turn
impacts the goodput. TCP Reno was developed in
order to enhance the goodput of TCP within
wired networks, especially when there is only one
lost packet from a window of data. This
enhancement can not be noticed in some studied
cases (which correspond to the ad hoc
environment) in terms of average goodput or
energy consumption per received bit, as we may
have more than one lost packet from a window of
data even at low BER (5%).

Hence from the above results, we found from
the above that TCP Reno does not fit well within
an ad hoc environment, where it is frequent that
many packets could be lost at a time.

,,,��� 7&3�1HZ�5HQR�3HUIRUPDQFH�

,,,���D� 2YHUYLHZ�
TCP New-Reno includes a small change to the

Reno algorithm at the sender [13][14] The change
concerns the sender’s behavior during Fast
Recovery when a partial ACK is received. A
partial ACK is the acknowledgment that can be
received in response to a lost-packet
retransmission. This one do not acknowledges all
the packets that were outstanding at the start of

the Fast Recovery period but acknowledges only
some of them. This means that there are multiple
losses in the same window of data. In TCP Reno,
partial ACKs take TCP out of Fast Recovery by
deflating the usable window back to the size of
the congestion window. In TCP New-Reno,
partial ACKs do not take TCP out of Fast
Recovery. Instead, partial ACKs received during
Fast Recovery are treated as an indication that the
packet immediately following the acknowledged
packet in the sequence space has been lost, and
should be retransmitted. Thus, when multiple
packets are lost from a single window of data,
New-Reno can recover without a retransmission
timeout, retransmitting one lost packet per round-
trip time (RTT) until all of the lost packets from
the window have been retransmitted. TCP New-
Reno remains in Fast Recovery until all of the
data outstanding when Fast Recovery was
initiated has been acknowledged [12]

,,,���E� 3HUIRUPDQFHV�5HJDUGLQJ�WR�/LQN�
/RVVHV�

In this variant of TCP, there are noticeable
savings in the energy consumption per received
bit in the case of burst packet losses. This is due
to the used partial ACKs. For burst packet loss,
TCP Tahoe performs better than TCP Reno (as
explained earlier), and TCP New-Reno
outperforms TCP Tahoe (Figure 2). This is due to
the fact that TCP New-Reno is not obliged to
wait for RTO before retransmitting the lost data
and in the mean time its congestion window
increases faster than that of TCP Tahoe (Fast
Recovery algorithm that exists in TCP New-Reno
aims to halves the congestion window instead of
minimizing it as in TCP Tahoe). We can see from
Figure 4 that TCP New-Reno outperforms both
TCP Tahoe and TCP Reno in case of burst error
due to its ability to recover from multiple losses
at a single window of data (partial
acknowledgements).

Finally, Figure 3 shows that TCP Tahoe has
shorter average connection time than TCP New-
Reno. Indeed, TCP New-Reno can not resend
more than one lost packet per RTT. TCP New-
Reno retransmits a lost packet after receiving a
partial ACK that indicates that the next packet in
sequence is lost. Thus, the recovery time of lost
packets is equal to the number of these lost
packets multiplied by RTT value. Hence, the
more the number of lost packets is, the longer the
recovery time and consequently the longer the
average connection time. That explains the long
average connection time of TCP New-Reno in
case of link failure case.

,,,���F� 3HUIRUPDQFHV�5HJDUGLQJ�WR�'LIIHUHQW�
/HYHOV�RI�%(5�

At low BER (5%), we can notice no difference
in the energy consumption between TCP Reno
and TCP New-Reno which is not surprising. The
development of TCP New-Reno was mainly
concerned by its behavior in front of multiple
packet loss within a single window of data to
overcome this problem in TCP Reno. Thus, it is
expected to recognize that effect at higher loss
rates which is verified in Figure 2. Thus, at high
BER, we found that TCP New-Reno has a good
performance in terms of energy consumption per
received bit. Also, we notice, from the same
Figure, that the energy consumption increases
with the BER. Figure 3 shows that TCP-New-
Reno has shorter average connection time
compared to TCP Reno, at all studied cases, due
to the partial ACKs used which does not exist
within TCP Reno. Also, Figure 4 shows that the
goodput of TCP New-Reno degrades with the
BER, which is an expected notice as the channel
losses increase. We can notice also that, TCP
Reno outperforms TCP New-Reno at high BER.
Although that the simulation results show that
TCP New-Reno has the ability to send and
receive more TCP data than TCP Reno and at a
shorter connection time, we found that some bad
connections (which have bad performance) had
affected the whole simulation performance. In
fact, we found that some connections had not sent
much data compared to other connections. This
can be explained by the fact that the number of
dead nodes with TCP New-Reno is higher than
those with TCP Reno. This has an effect on the
whole simulation as the average goodput had
been calculated and averaged over all the TCP
connections in the simulations’ scenario.

TCP New-Reno performs generally well within
a static ad hoc network. Partial ACKs in TCP
New-Reno helps it to better manage the recovery
of consecutive packet losses. Its main drawback
is the time spent to recover from multiple losses.

,,,��� 7&3�6$&.�3HUIRUPDQFH�

,,,���D� 2YHUYLHZ�
Traditional implementations of TCP use an

acknowledgement number field that contains a
cumulative acknowledgement, indicating that the
TCP receiver has received all of the data up to the
indicated byte. A selective acknowledgement
option allows receivers to additionally report
non-sequential data they have received. The
SACK option is used in an ACK packet to
indicate which packets were received
precisely[12].

,,,���E� 3HUIRUPDQFHV�5HJDUGLQJ�WR�/LQN�
/RVVHV�

Although that it was expected that TCP
SACK outperforms TCP New-Reno in terms of
energy consumption per received bit. This is
mainly due to the Selective Acknowledgements
feature that allows TCP SACK to terminate the
retransmission of lost data more quickly than
TCP New-Reno (which has to wait for all partial
ACKs to know which segments are missing at the
receiver). However, in terms of energy
consumption, this gain is neutralized (Figure 2).
We think that this is due to the overhead that is
introduced by the SACK option. Indeed, SACK
packets3 can in certain cases reach the double of
normal TCP ACK packet size4. This leads to
more energy consumption per sent SACK. Figure
3 is showing that TCP SACK has a shorter
average connection time in case of burst loss (lost
link) as it retransmits the lost packets
consecutively without waiting for RTTs. The
packets that may use the recovered route (by the
routing protocol) are not retransmitted. In the
mean time, TCP New-Reno spends more time in
order to recover from this type of losses (as
mentioned early). We can also notice that the
average goodput obtained when using TCP
SACK is higher than the one obtained by both
TCP Tahoe and TCP Reno (Figure 4). This is
also due to its ability to retransmit only the lost
packets. Inversely, we found from the same
Figure that TCP New-Reno has better goodput
than TCP SACK. Actually, the simulations
results show that TCP SACK simulation scenario
has transmitted less data bytes than TCP New-
Reno. Additionally, the results show also that
there were more dropped data bytes than TCP
New-Reno. These observations lead us to
conclude that the high energy consumption of
TCP SACK is the main cause of having lower
goodput. The high energy consumption of TCP
SACK has influenced the whole simulation
performance in the way that the simulation
nodes’ were going out of battery more quickly
than in the case of TCP New-Reno.

Furthermore, one should note that the energy
consumption (per time unit) due to the operation
of the algorithms of TCP SACK (CPU units) is
higher than for TCP New-Reno. This is due to the
important additional overhead related to the
timers and algorithms TCP SACK have to run.
Then, even if, TCP SACK has a slightly low
average connection time in the burst error case

3 SACK packet size = IP Header + TCP ACK Header + SACK
option = 20 bytes + 20 bytes + 40 bytes = 80 bytes. 40 bytes is
the maximum size of a TCP Header option. SACK can use this
entire size to transmit the 9;:=< :?>A@ B CD:�E">AFAGIHKJ;< :?L=MK:?N�:=GK@ . This size
depends on the number of segments to be acknowledged.
4 Normal TCP ACK packet size = IP Header + TCP ACK Header
= 20 bytes + 20 bytes = 40 bytes.

(link lost), the energy consumed by TCP SACK
is certainly higher then the one consumed by TCP
New-Reno.

,,,���F� 3HUIRUPDQFHV�5HJDUGLQJ�WR�'LIIHUHQW�
/HYHOV�RI�%(5�

Figure 2 shows also that, at high BER (15%),
TCP SACK has a good performance in terms of
energy consumption per received bit compared to
the other variants. From that, we can conclude
that using selective acknowledgements might be
effective within high BER wireless ad hoc
networks. On the other hand, we must mention
that the processing overhead of TCP SACK
would have a negative effect on TCP
performance as the BER increases. From Figure
3 we can see that, at different BER cases, TCP
New-Reno has a shorter average connection time
than that of TCP SACK. Here, we find that, as
TCP SACK nodes goes down more quickly than
those of TCP New-Reno; and we had many link
losses in the network. Thus, TCP SACK
recognizes the packet loss by RTO. This in turn
increases the average connection time. This
explains why TCP SACK does not consume a lot
of energy compared to other TCP variants. The
energy consumed here is the idle energy.
Regarding the average goodput of TCP SACK,
Figure 4 demonstrates that the performance of
TCP SACK degrades as the BER of the wireless
channel increases for the same reasons as above.
TCP SACK enters Slow-Start phase each time
after RTO expiration. This leads to
underutilization of the bandwidth.

From all these results, we can say that TCP
SACK has not always the best performances.
Sometimes TCP New-Reno outperforms TCP
SACK. This is due to the higher energy
consumption of TCP SACK.

,,,��� 7&3�:HVWZRRG15�3HUIRUPDQFH�

,,,���D� 2YHUYLHZ�
TCP WestwoodNR is a sender-side

modification of the TCP congestion window
algorithm that is intended to improve upon the
performance of TCP New-Reno and TCP Reno in
wired as well as wireless networks. In fact, there
are two variants of TCP-Westwood, one is based
on TCP Reno and the other is based on TCP
New-Reno. Our study uses this latter. The
improvement is also targeted to be most
significant in wireless networks with lossy links.
Indeed, TCP WestwoodNR [15] relies on end-to-
end bandwidth estimation to discriminate the
cause of packet loss (congestion or wireless
channel effect). This discrimination is based on
RTT values.

,,,���E� 3HUIRUPDQFHV�5HJDUGLQJ�WR�/LQN�
/RVVHV�

Figure 2 illustrates that TCP WestwoodNR has
comparable energy consumption per received bit
when compared with TCP New-Reno. At link
loss case, both TCP variants recognize the packet
loss with RTO expiration. Thus, both react the
same way by backing off for a while then
triggering the Fast Recovery and entering Slow-
Start phase. Figure 3 shows that TCP
WestwoodNR has always longer average
connection time than that of TCP New-Reno.
Furthermore, at the lost link case, the average
goodput of TCP WestwoodNR (Figure 4) is less
than that of TCP New-Reno. This is due to the
lost ACKs. Indeed, in order to estimate the end-
to-end bandwidth and discriminate among loss
types, TCP WestwoodNR relies on the received
ACKs. In a situation where there is several ACK
losses, this may lead to wrong estimate of the
end-to-end bandwidth and consequently to TCP
WestwoodNR misbehavior.

,,,���F� 3HUIRUPDQFHV�5HJDUGLQJ�WR�'LIIHUHQW�
/HYHOV�RI�%(5�

From Figure 2, we found that TCP
WestwoodNR has higher energy consumption per
received bit than TCP New-Reno in most cases.
In addition, it can be noticed (from the same
Figure) that TCP WestwoodNR energy
consumption is getting worst with BER increase.
We think that its dependence on RTT
measurements to calculate the estimated
bandwidth is also responsible of this latter effect.
Similarly to the lost link case, as BER increases
over the wireless channels, the returned ACKs
might be lost or corrupted. These lost or
corrupted ACKs could cause mistaken estimated
bandwidth calculations. From Figure 4, we
recognized that TCP WestwoodNR has better
performance in term of average goodput than
TCP New-Reno at low BER, due to its ability to
adjust its transmission rate according to the
network bandwidth conditions (instead of blindly
halving it as in TCP New-Reno).���

,,,��� 7&3�9HJDV�3HUIRUPDQFH�

,,,���D� 2YHUYLHZ�
TCP Vegas extends Reno’ s retransmission

mechanisms as follows. First, Vegas reads and
records the system clock each time a segment is
sent. When an ACK arrives, Vegas reads the
clock again and does the RTT calculation using
this time and the timestamp recorded for the
relevant segment. Vegas then uses this more
accurate RTT estimate to decide to retransmit a
lost packets [16] before reaching RTO. TCP
Vegas uses RTT values to calculate the actual

transmission rate in the network. Also, by
comparing that value by the expected goodput in
the network, TCP Vegas decides how to modify
its transmission rate.

,,,���E� 3HUIRUPDQFHV�5HJDUGLQJ�WR�/LQN�
/RVVHV�

It is shown (Figure 3) that TCP Vegas has low
average connection time in case of burst error
(lost link) due to its ability to deduce a good
estimation for the transmission rate compared to
TCP New-Reno (that simply halves the
congestion window size). This behavior also
leads to less energy consumption as can be
verified from Figure 2. TCP Vegas can be
considered the best performing variant in the
cases of link loss (burst error loss) as can be
shown from Figure 4. Indeed, it is an expected
result. TCP Vegas is a modified version of TCP
New-Reno. It replies to packet losses faster than
TCP New-Reno. The algorithm of TCP Vegas is
based on the principal that there are signs prior to
congestion in the network. For example, an
increase in RTT values is a sign indicating that
router’ s queue is building up and that congestion
is about to happen. This will lead to faster
recovery from packet losses and to a good
utilization of the available bandwidth (in the lost
link case).

,,,���F� 3HUIRUPDQFHV�5HJDUGLQJ�WR�'LIIHUHQW�
/HYHOV�RI�%(5�

At low BER (5%), TCP Vegas has shorter
average connection time than all the other TCP
variants (Figure 3). This is due to TCP Vegas that
may retransmit a packet after the first duplicate
ACK. Indeed, on the first duplicate ACK
received TCP Vegas checks for the RTT value
and compares it with the RTO value to recognize
the packet loss (as explained earlier). By doing
so, it leads to faster recovery than the other TCP
variants that have to stay until the reception of the
third duplicate ACK. On the other hand, at higher
BER (10% and 15%), TCP Vegas has long
average connection time and higher energy
consumption per received bit, because of its
dependence on the RTT measured values of the
received ACKs. Hence, at high BER, we will
have a high loss in received ACKs that in turn
will force TCP Vegas not to have a good
behavior (as can be seen from Figures 2 and 3).

Figure 4 shows that, in the cases of random
error losses, TCP Vegas has a bad performance
especially when the BER increases. This is also
due to the dependence of TCP Vegas on the RTT
measurements that may cause mistaken
calculations when the BER increases. It thus
leads to more unnecessary retransmissions
instead of decreasing them.

,,,��� 6XPPDU\�
To summarize simulation results obtained in

this work, at high BER (15%) TCP New-Reno
outperforms the other TCP variants followed by
TCP SACK. In low and medium BER (5% and
10%), TCP New-Reno has also a moderate
energy consumption per received bit ratio. In
addition, TCP Vegas and TCP New-Reno have
the best (the least) energy consumption when
there is a lost link in the network.

When comparing the average connection time,
we found that at medium and high BER (10% and
15%) TCP New-Reno outperforms the other TCP
variants. In addition, TCP Vegas followed by
TCP New-Reno, have the best (the least) average
connection time when there is a lost link in the
network. On the other hand, when we have a low
BER (5%), the best TCP variant, in term of
average connection time, is TCP Vegas. This is
due to its ability, at this BER level, to adjust well
the congestion window size. Regarding the
average goodput, we conclude that most TCP
variants perform better at link loss case than at
random BER. At low BER we find that TCP
SACK has the best average goodput as it resends
only the lost packets. At higher BER (10%), our
results show that TCP New-Reno would have the
ability to achieve better goodput. On the other
hand, we find that TCP Vegas has the best
performance in the case of lost link due to its
modified retransmission time-out algorithm.

Our results show that in almost all studied
situations, TCP New-Reno is the one having the
most acceptable performances in terms of energy
efficiency and goodput in a static ad hoc network.
Although that TCP New-Reno does not always
have the best results, the partial ACKs that are
included helps improving TCP New-Reno’ s
performance in most cases.

According to the previous results, we can also
say that the improvements that have been added
to TCP SACK, WestwoodNR and Vegas de not
well fit to all the situations that may happen in ad
hoc networks. Hence, TCP SACK suffers from
important energy consumption (due to the SACK
option) which has consequences on the
survivability of the ad hoc network. For its part,
the performance of TCP WestwoodNR is
strongly impacted when the number of lost ACKs
increases, with the increase of the BER value or
in the link loss case. This leads to TCP
WestwoodNR misbehavior. Finally, even if TCP
Vegas performs well at link loss case, its
dependence on RTT values to calculate the
transmission rate leads to some misbehavior in
the case of wireless channel BER. This
misbehavior degrades subsequently the
performances of TCP Vegas.

,9�& ������O�	�PQ
����R�
�
�) 	���	
��� : ����$ �
It was proved that the congestion control

algorithm in TCP variants has an important effect
on the energy consumption and goodput in an ad
hoc network. As a general result, we found that
the TCP congestion control algorithms allow for
greater energy savings by backing off during
burst error cases. Also, we found that the average
connection time of a TCP session can give a good
indication of the delay introduced in the network,
leading to energy consumption. Our research
results confirm that TCP as it exits is not suitable
for wireless ad hoc networks especially at high
BER. On the other hand, we find that TCP
variants studied here are more appropriate
(having better performances) for dealing with
link loss cases that may be considered as a
persistent congestion situation in the network.
From our comparative study in this paper, we
conclude that TCP New-Reno can be considered
as a well performing variant within an ad hoc
environment among all other TCP variants,
because of its ability to handle both random BER
and losses due to broken-links efficiently.
However, this behavior may be improved as
some other TCP variants outperform TCP New-
Reno in some situations.

In the presented work, we studied the behavior
of TCP variants in static ad hoc networks by
varying the type and the importance of losses. In
the above scenarios there is no mobility
introduced in the network and then no effect due
to mobility handling by ad hoc routing protocols.
In order to find the effect of both nodes mobility
and different routing protocols on TCP
performances, we intend (in future work) to
extend our study of TCP performance within a
mobile ad hoc network environment.

9�5 �������
�������SP �
[1] M. Zorzi and R. Rao, «Energy Efficiency of TCP in a

local wireless environment», TVUKWKX Y Z\[�Z?] ^SU?_1`badcIeKfgihIh Y X jDcQ] X U=eKa , vol. 6, no. 3, July 2001.
[2] S. Agrawal and S. Singh, «An Experimental Study of

TCP’ s Energy Consumption over a Wireless Link», kl] mn"o _�U h ZbcIe p�Zb_1aDU=eIcQYqTrUIWlX Y Z s�U?t
t o eiX jDcQ] X U=eKa
s�U=e ubZb_1ZAeljDZ , Feb 20-22, 2001, Vienna, Austria.

[3] H. Singh and S. Singh, «Energy consumption of TCP
Reno, New Reno, and SACK in multi-hop wireless
networks», in

g s�Twv?x1y�T n�zI{ x�s"v}|i~I~b| , June 15-19
2002.

[4] H. Singh, S. Saxena, and S. Singh, «Energy
Consumption of TCP in Ad Hoc Networks», �I��� X _1Z?Y Zba1a
[�Z?] ^SU?_1`ba , Vol. 10(5), Sep. 2004.

[5] M. Allman, V. Paxon, W. Stevens, «RFC 2581: TCP
Congestion Control», April 1999,
http://www.ietf.org/rfc/rfc2581.txt.

[6] Network Simulator – NS-2. Available at
www.isi.edu/nsnam/ns/

[7] Thomas Clausen, «Comparative Study of Routing
Protocols for Mobile Ad-Hoc NETworks», INRIA, Mars
2004

[8] V. Tsaoussidis et al., «Energy/Throughput Tradeoffs of
TCP Error Control Strategies»,

h _DUIjA���l] m�x n�n�n vD�Qt h �
s�U?t h o] Zb_1a�cIeIf s�U?t
t o eQX jDcQ] X U=eKa , France, July 2000.

[9] V. Jacobson., «Congestion avoidance and control»,
v?x1y
s���T�T}� �I�qa �Qt h U?aDX o t U=e�j=U?t
t o eQX jDcQ] X U=eKa
cK_�jDmiX] Zbj=] o _1Zba�cIeIf h _DUI] UIjbUKY a , pages 314-329, 1988. An
updated version is available via
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.z.

[10] M. Zorzi and R. Rao., «Energy Efficiency of TCP in a
local wireless environment», TVUKWKX Y Z\[�Z?] ^SU?_1`badcIeKfgihIh Y X jDcQ] X U=eKa , Volume 6, Issue 3, July 2001.

[11] V. Jacobson., «Modified TCP Congestion avoidance
Algorithm»,

z Z=jDmKeQX jDcQY�_�Z h U?_�] , 30 April, 1990. Email to
the end2end-interest mailing list, URL
ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

[12] K. Fall and S. Floyd., «Simulation-based comparison of
Tahoe, Reno, and sack TCP», in ACM j=U?t h o] Zb_
j=U?t
t o eQX jDcQ] X U=eKa"_�Zb�?X ZA^ , July 1996.

[13] J. Hoe., «Start-up Dynamics of TCP’ s Congestion
Control and Avoidance Scheme », T�cKaD] Zb_;� aS] mKZbaDX a , MIT,
June, 1995.

[14] D.D. Clark and J. Hoe., «Start-up Dynamics of TCP’ s
Congestion Control and Avoidance Scheme », Technical
_1Z h U?_D] , June, 1995. Presentation to the Internet end2end
Research Group, cited for acknowledgement purposes
only.

[15] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R.
Wang, «TCP Westwood: Bandwidth Estimation for
enhanced transport over wireless links»,

h _DUIjb�iU u] mIZ��b] m
cKeIe o clY�X eQ] Zb_�eKcl] X U=eKclY�jbU?e u=Zb_�ZbeKjAZ�U=e�t�UKWKX Y Z�jbU?t h o] X eI�
cKeIf�eKZ=] ^SU?_�`IX eI� , July 2001.

[16] Lawrence S. Brakmo, Sean W. O’ Malley, and Larry L.
Peterson «TCP Vegas: New Techniques for Congestion
Detection and Avoidance», SIGCOMM’ 94, 1994.

