
Effect of Ad Hoc Routing Protocols on TCP
Performance within MANETS

Alaa Seddik-Ghaleb

Networks & Multimedia Systems
Research Group (LRSM), Institut
d’Informatique d’Entreprise (IIE)
18 allée Jean Rostand, 91025 Evry,

CEDEX - France.
seddik@iie.cnam.fr

Yacine Ghamri-Doudane
Networks & Multimedia Systems

Research Group (LRSM), Institut
d’Informatique d’Entreprise (IIE)
18 allée Jean Rostand, 91025 Evry,

CEDEX - France.
ghamri@iie.cnam.fr

Sidi-Mohammed Senouci
France Telecom R&D
2 Av. Pierre Marzin,

22307,
Lannion, France

sidimohammed.senouci
@francetelecom.com

Abstract- TCP was mainly developed to be deployed within
wired networks. Recently, many researches have studied its
performance within Mobile Ad hoc Networks (MANETs). The
research results found that TCP performance are highly
influenced by the characteristics of such networks. This is due to
the manner that TCP uses to implement reliability and its
inability to distinguish between different packet loss reasons.
Indeed, unlike wired networks, where packet loss is mainly
caused by network congestion, in MANETs we could have many
other reasons to lose a data packet. However, TCP considers that
all packet losses are due to network congestion. This enforces
TCP to be aggressive in front of certain types of packet loss.
Packet losses in MANETs can be either related to the wireless
communication environment (i.e. the effect of fading,
interferences, multi-path routing, etc.) or to the dynamic nature
of such networks (i.e. link failures, network partitioning). This
latter could be due to the node mobility or to the node battery
depletion. This could lead to frequent route re-computation
within the network. In this work, we intend to study the effect of
ad hoc routing protocols on TCP performance (energy
consumption and average goodput1) within MANETs. We
consider in our study different types of ad hoc routing protocols
having different characteristics: reactive vs. proactive, distance
vector vs. link state, and source routing. Our study results show
that; DSDV as a proactive distance vector routing protocol leads
to the most acceptable TCP performance results and this is
confirmed at different mobility levels.

1. INTRODUCTION
Wireless ad hoc networks have been proposed as the
networking solution for those situations where the network set
up time is a major constraint and/or a networking
infrastructure is either not available or not desirable. Ad hoc
networks allow mobile devices to exchange information using
their wireless infrastructure without the need of a fixed
infrastructure. Every device in wireless ad hoc networks takes
the role of an end system, a server, a router, a gateway, etc., or
all of them at the same time. It is expected that the
performance of TCP will be affected considerably in ad hoc
networks not only due to the effects of the wireless
environment but also due to specific issues like mobility,
routing, and energy constrains [1]. In mobile networks, such
as MANETs, TCP displays some undesirable patterns of
behavior in the context of efficient energy expenditure because
of its reliability feature [2]. As an example, high channel

1 The amount of data correctly received during a given time of period.

delays in a mobile network, causing the TCP timer to expire,
will force TCP to unnecessarily retransmit the delayed packet
and to consume more time and energy resulting in network
performance degradation. The performance of mobile ad hoc
networks depends on many factors such as node mobility
model, traffic pattern, network topology, obstacle positions,
and so on. To better understand the effect of these factors, we
classify them into two categories: those inherited from the
wireless environment and others due to the mobile ad hoc
characteristics itself. In a previous work [3], a complete
analysis of the main TCP variants behavior has been realized
in regards to the wireless environment characteristics. In the
current work, our objective is to analyze the effect of the
routing protocol on TCP performances in MANETs.

In the following, we present some of the most important issues
related to the routing protocol in a mobile ad hoc network.
When an old route is no longer available, the network layer at
the sender attempts to find a new route to the destination. It is
possible that discovering a new route may take significantly
longer than the retransmission timeout interval (RTO) at the
sender. As a result, the TCP sender times out, retransmits a
packet and invokes congestion control. Thus, when a new
route is discovered, the throughput will continue to be small
for some time because TCP at the sender grows its congestion
window using the slow start and congestion avoidance
algorithms. This is clearly undesirable behavior because the
TCP connection will be very inefficient. If we imagine a
network in which route computations are done frequently (due
to high mobility), the TCP connection will never get an
opportunity to transmit at the maximum negotiated rate (the
congestion window will always be significantly smaller than
the advertised window size from the receiver) [4]. In addition,
it is likely that the ad hoc network may periodically get
partitioned for several seconds at a time. If the sender and the
receiver of a TCP connection lie in different partitions, all the
sender’s packets get dropped by the network resulting in the
sender invoking congestion control. If the partition lasts for a
significant amount of time (say several times longer than the
RTO), the situation gets even worse because of phenomena
called serial timeouts. A serial timeout is a condition wherein
multiple consecutive retransmissions of the same segment are
invoked while the receiver is disconnected from the sender.
All these retransmissions are thus lost. Since the
retransmission timer at the sender is doubled with each

unsuccessful retransmission attempt (until it reaches 64 sec),
several consecutive failures can lead to inactivity lasting for a
while even when the sender and receiver get reconnected [4].
All the above situations can be a result of the dynamic nature
of MANETs (i.e. nodes mobility or battery depletion). In order
to study TCP performance over MANETs, it is important to
analyze the effect of most common ad hoc routing protocols in
such networks. Ad hoc routing protocols are responsible of re-
establishing lost links within the network and reconnecting
partitioned ones. Then, it is obvious that the behavior of these
routing protocols will affect TCP performance. In this paper,
we focus our attention on studying the impact of different ad
hoc routing protocols on the energy efficiency as well as the
obtained goodput of the six major TCP variants (Tahoe, Reno,
New-Reno, SACK, Vegas, and WestwoodNR). More
precisely, we will consider the effect of four ad hoc routing
protocols those following different design principals. These
protocols are: AODV (Ad-Hoc On-Demand Distance Vector)
which is a reactive distance vector protocol, DSR (Dynamic
Source Routing) a reactive source routing protocol, DSDV
(Destination-Sequenced Distance Vector) a proactive distance
vector protocol, and finally OLSR (Optimized Link State
Routing) a proactive link state protocol.
The remainder of this paper is organized as follows: after
presenting the motivation behind our current work in section
2, section 3 overviews each TCP variant as well as the
different ad hoc routing protocols, section 4 presents TCP
performance in terms of energy consumption and average
goodput with respect to different ad hoc routing protocols.
Finally, we summarize the main results of this work and give
some ideas for future work.

2. MOTIVATION
Recently, many researchers have studied TCP performance in
terms of energy consumption and average goodput within
wireless mobile networks [5][6][7]. It was proved that the
performance of TCP degrades considerably in mobile ad hoc
networks environment, due to the specific issues related to
those environments [8]. Many research projects were
specifically interested in studying TCP performances (energy
consumption and/or goodput) within such environments [7][9].
However, none of them compared more than three TCP variants
over a widest set of realistic scenarios. In this paper, we aim to
make a clear comparison between the most common TCP
variants. The behavior of ad hoc routing protocols in face of the
dynamic nature of ad hoc networks can have an effect on these
performances. Thus, this comparative study takes place using
different ad hoc routing protocols. This study concentrates on
analyzing the effects of these protocols whilst the mobility rate
is varied. We make our simulations using a large number of
nodes, in order to realize the effect of losing a non-adjacent
node on both (i) the energy consumption of the other nodes in
the network and (ii) the goodput obtained by TCP connections.
The aim of this study is to help understanding the impact of the
different ad hoc routing protocols and node mobility on TCP
performance in MANETs. Thus, obtained results can be used as
a guideline of the interactions between TCP and ad hoc routing
protocols in MANETs.

3. BACKGROUND
As our study relates to the main TCP variants and ad hoc
routing algorithms these are described briefly in the following
sub-sections:

3.1. Overview of TCP Variants
3.1.1. TCP Tahoe
TCP Tahoe is the first TCP variant that incorporates
congestion control mechanisms. Indeed its implementation
added a number of new algorithms and refinements to earlier
implementations. Mainly these algorithms and refinements
are: Slow-Start, Congestion Avoidance, and Fast Retransmit
[10][11]. The goal of slow-start and congestion avoidance is to
keep the congestion window2 size around optimal size as
much as possible. Slow-start increases the congestion window
(CWND) size rapidly to reach maximum safety transfer rate
(SSThresold) as fast as possible and congestion avoidance
increases the CWND slowly to avoid packet losses as long as
possible. If a packet is not acknowledged after a predefined
timeout, Retransmission TimeOut (RTO), it is regarded as lost
and is retransmitted. On the other hand, at the reception of
three duplicate3 ACKs, the first unacknowledged packet is
also considered as lost. In this case, the Fast Retransmit
algorithm is in charge of retransmitting the lost packet without
waiting for the RTO. This latest speeds-up the lost packet
retransmission. Finally, note that in both situations, the packet
retransmission is followed by a reduction of both the
SSThresh, to CWND/2, and the CWND to its minimum
(CWND= 1 segment). The slow start phase is then triggered.

3.1.2. TCP Reno
The congestion control mechanisms of TCP Reno, the most
popular TCP implementation, retains the enhancements
incorporated into TCP Tahoe, but modifies the Fast
Retransmit operation to include Fast Recovery [12]. The
Slow-Start and the Congestion Avoidance algorithms are used
by a TCP Reno sender to control the amount of data injected
into the network while the Fast Retransmit and the Fast
Recovery are used to recover from packet losses without the
need for RTOs [13]. Fast Recovery algorithm reacts after a
packet loss discovered by a three duplicate ACKs. Then it
halves the congestion window instead of decreasing it to
minimum as in TCP Tahoe.

3.1.3. TCP New-Reno
TCP New-Reno includes a small change to the Reno algorithm
at the sender [14]. This change concerns the sender’s behavior
during Fast Recovery when a partial ACK is received. A
partial ACK is the acknowledgment that can be received in
response to a lost-packet retransmission. This one do not
acknowledges all the packets that were outstanding at the start
of the Fast Recovery period but acknowledges only some of
them. This means that there are multiple losses in the same
window of data. In TCP Reno, partial ACKs take TCP out of
Fast Recovery by deflating the usable window back to the size

2 Maximum amount of data that can be sent out over a connection without
being acknowledged.
3 TCP receivers generate a duplicate ACK when out-of-sequence segment is
received.

of the congestion window. In TCP New-Reno, partial ACKs
do not take TCP out of Fast Recovery. Instead, partial ACKs
received during Fast Recovery are treated as an indication that
the packet immediately following the acknowledged packet in
the sequence space has been lost, and should be retransmitted.
Thus, when multiple packets are lost from a single window of
data, New-Reno can recover without a retransmission timeout,
retransmitting one lost packet per round-trip time (RTT) until
all of the lost packets from the window have been
retransmitted. TCP New-Reno remains in Fast Recovery until
all of the data outstanding when Fast Recovery was initiated
has been acknowledged [13].

3.1.4. TCP SACK
Traditional implementations of TCP use an acknowledgement
number field that contains a cumulative acknowledgement,
indicating that the TCP receiver has received all of the data up
to the indicated byte. A selective acknowledgement option
allows receivers to additionally report non-sequential data they
have received. The SACK option is used in an ACK packet to
indicate which packets were received precisely [13] and thus
allows to deduce which packets had been lost. This option
aims to speed up the the retransmission of lost packets. This
will in turn avoid retransmitting the whole window of data.

3.1.5. TCP WestwoodNR
TCP Westwood is a sender-side modification of the TCP
congestion window algorithm that is intended to improve upon
the performance of TCP New-Reno and TCP Reno in wired as
well as wireless networks. In fact, there are two variants of
TCP-Westwood, one is based on TCP Reno and the other is
based on TCP New-Reno. Our study uses this latter (depicted
as TCP WestwoodNR). The improvement is also targeted to
be most significant in wireless networks with lossy links.
Indeed, TCP WestwoodNR [15] relies on end-to-end
bandwidth estimation to discriminate the cause of packet loss
(congestion or wireless channel effect). This discrimination is
based on measured RTT values.

3.1.6. TCP Vegas
TCP Vegas extends Reno’s retransmission mechanisms. It
relies on measured RTT values of sent packets. According to
this measurement, Vegas may decide to retransmit a packet
[16] before reaching RTO. When a duplicate ACK is received,
Vegas checks to see if the difference between the current time
and the timestamp recorded for the first un-acknowledged
segment (i.e. its RTT) is greater than the timeout value. If it is,
then Vegas retransmits the segment without having to wait for
three duplicate ACKs. Also, TCP Vegas uses RTT values to
calculate the actual transmission rate in the network. Hence,
by comparing that value by the expected goodput in the
network, TCP Vegas decides how to modify its transmission
rate.

3.2. Overview of Ad Hoc Routing Protocols
3.2.1. DSDV
The Destination-Sequenced Distance-Vector Routing protocol
(DSDV) described in [17] is a table-driven proactive algorithm
based on the classical Bellman-Ford routing mechanism [18].
The improvements made to the Bellman-Ford algorithm

include freedom from loops in routing tables. Every mobile
node in the network maintains a routing table in which all of
the possible destinations within the network and the number of
hops to each destination are recorded. Each entry is marked
with a sequence number assigned by the destination node. The
sequence numbers enable the mobile nodes to distinguish stale
routes from new ones, thereby avoiding the formation of
routing loops. Routing table updates are periodically
transmitted throughout the network in order to maintain table
consistency. To help alleviate the potentially large amount of
network traffic that such updates can generate, route updates
can employ two possible types of packets. The first is known
as a full dump. This type of packet carries all available routing
information and can require multiple network protocol data
units (NPDUs). During periods of occasional movement, these
packets are transmitted infrequently. Smaller incremental
packets are used to relay only that information which has
changed since the last full dump. Each of these broadcasts
should fit into a standard-size NPDU, thereby decreasing the
amount of traffic generated. Every node keeps a route table
(Destination-address, Metric, and Sequence-number) for every
possible destination.

3.2.2. OLSR
The Optimized Link-State Routing Protocol (OLSR) is a
proactive link-state routing protocol, employing periodic
message exchange to update topological information in each
node in the network, so the routes are always immediately
available when needed. While having some commonalities
with OSPF, OLSR is specially designed to operate in the
context of ad hoc networks, i.e. in bandwidth-constrained,
dynamic networks. The OLSR protocol applies an optimized
flooding mechanism, called MPR-flooding, (Multipoint
Relays) to minimize the problem of duplicate reception of
message within a region. The MPR flooding mechanism is
directly used by OLSR for diffusing topological information
to the network [19].

3.2.3. AODV
The Ad Hoc On-Demand Distance Vector (AODV) routing
protocol described in [20] builds on the DSDV algorithm
previously described. AODV is an improvement on DSDV
because it typically minimizes the number of required
broadcasts by creating routes on an on-demand basis, as
opposed to maintaining a complete list of routes as in the
DSDV algorithm. The authors of AODV classify it as a pure
on demand route acquisition system, since nodes that are not
on a selected path do not maintain routing information or
participate in routing table exchanges [20]. When a source
node desires to send a message to some destination node and
does not already have a valid route to that destination, it
initiates a path discovery process to locate the other node. It
broadcasts a route request (RREQ) packet to its neighbors,
which then forward the request to their neighbors, and so on,
until either the destination or an intermediate node with a
“fresh enough” route to the destination is located. Once the
RREQ reaches the destination or an intermediate node with a
fresh enough route, the destination/intermediate node responds
by unicasting a route reply (RREP) packet back to the

neighbor from which it first received the RREQ. This RREP is
than unicasted from neighbor to another until reaching the
source node. Hence, all the nodes participating to the route
will have the ability to update their routing tables accordingly.

3.2.4. DSR
The Dynamic Source Routing (DSR) protocol presented in
[21] is an on-demand routing protocol that is based on the
concept of source routing. Mobile nodes are required to
maintain route caches that contain the source routes of which
the mobile is aware. Entries in the route cache are continually
updated as new routes are learned. The protocol consists of
two major phases: route discovery and route maintenance.
When a mobile node has a packet to send to some destination,
it first consults its route cache to determine whether it already
has a route to the destination. If it has an unexpired route to
the destination, it will use this route to send the packet. On the
other hand, if the node does not have such a route, it initiates
route discovery by broadcasting a route request packet. This
route request contains the address of the destination, along
with the source node’s address and a unique identification
number. Each node receiving the packet checks whether it
knows of a route to the destination. If it does not, it adds its
own address to the route record of the packet and then
forwards the packet along its outgoing links. A route reply is
generated when the route request reaches either the destination
itself, or an intermediate node which contains in its route
cache an unexpired route to the destination [22]. DSR has the
advantage that no routing tables must be kept to route a given
packet, since the entire route is contained in the packet header.
The caching of any initiated or overheard routing data can
significantly reduce the number of control messages being
sent, reducing overhead. The primary disadvantages of DSR
are that it is not scalable to large networks, and that it requires
significantly more processing resources than most other
protocols. In order to obtain routing information, each node
must spend much more time processing any control data it
receives, even if it is not the intended recipient [23]. DSR does
not use any periodic routing advertisements, link status
sensing, or neighbor detection packets. Also, it does not rely
on these functions from any underlying protocols in the
network.

4. AD HOC ROUTING PROTOCOLS’ EFFECTS ON TCP PERFORMANCE IN

MANET
In this section we study the performance of different TCP
variants in terms of energy consumption and average goodput
within wireless mobile ad hoc networks. We take into
consideration the effect of different ad hoc routing protocols by
implementing the most common ones and analyzing TCP
performance regarding to the behavior of each ad hoc routing
protocol when this one have to recover a link failure and how
this action could affect TCP performance. We study the
performances regarding two common factors that may affect
TCP performances within such environments: (i) the choice of
ad routing protocol (ii) the nodes' mobility rate.

4.1. Simulation Results
Our simulations are realized using the Network Simulator
version 2 (NS-2) [24]. Each simulation consists of a network
of 20 nodes confined in a (670 x 670) m² area. These nodes
are randomly positioned in the simulation area. 14 TCP
connections were established (ftp traffic used with a packet
size of 512 bytes) between the nodes. The source-destination
pairs for FTP sessions were chosen randomly. They are shown
in Figure 1.

Figure 1. Network topology and FTP session.

 The simulation time is set to 400 seconds. The initial battery
capacity of each node is 10 joules. This initial energy is
reduced progressively by data transmission and reception
(which includes also the retransmission and forwarding). We
consider the simple case where the transmission and reception
of a packet consumes a fixed amount of energy from the
node’s battery. We fix the amount of energy to be consumed
per each transmitted packet at 0.6 watt, and that for each
received packet at 0.3 watt. When the initial energy reaches
zero joules, the corresponding node cannot take part anymore
in the communication, and is regarded as dead. Note that a
node death can lead to routes reorganizations in the network.
To study the effect of different routing algorithms on TCP
performances, we aim to study both reactive and proactive
routing protocols. In order to study the effect of nodes'
mobility in MANETs on TCP performance, we use three
different values of mobility rates (5m/s, 15m/s, and 30m/s).
All nodes communicate with identical wireless radios using
the standard MAC 802.11 which have a bandwidth of 2Mbps
and a radio propagation range of 250 meters. In this work, we
study three TCP performance parameters: the first one is the
energy consumed in transmission, reception, forwarding and
retransmission of packets. This energy is calculated
proportionally to the amount of received data. Thus, it is
defined as energy consumed per received bit. The second one
is the average connection duration of TCP sessions. Note that,
it was demonstrated in the literature [25] that this connection
duration is proportional to the energy consumed at each node
listening to the radio channel plus that consumed to execute
the recovery mechanisms associated to each TCP (Timeouts,
CWND threshold adjustments, etc.). This sum is called idle

��

��

���

��

��

���

�

�

���

���

���

�

	�

�
�

�

�	�

���

���

���

��

energy in the following. The third parameter studied is the
average TCP goodput.

4.2. Effect of Routing Protocols
4.2.1. TCP Performances at 5m/s mobility rate
Figure 2 shows that, at 5m/s mobility rate, proactive protocols
help TCP to have best performance in terms of energy
consumption per received bit compared to reactive routing
protocols. The fact that proactive protocols include all the
available routes towards any destination in the network into
routing tables, helps reducing the route recovery time spent in
the network. We must note here that, the longer the route
recovery time is the most probable that TCP sender’s RTO
timer expires. That enforces triggering TCP congestion control
algorithm. Thus, decreasing the CWND, and entering “slow-
start” phase. On the other hand, reactive protocols do not start
a route discovery process unless it’s needed by the source
node. That may lead to higher latency in route recovery
process. In other words, TCP sender’s RTO timer might expire
before that the routing protocol can recover from lost link.
Here, TCP sender will not be able to know about the route
recovery and it may stay in the “back off” state even that there
is a recovered route towards the destination. Moreover, the
case may become worse if the route recovery process longs for
more than RTO timer. TCP enters into a “serial timeouts
phenomena”. A serial time out is a condition wherein multiple
consecutive retransmissions of the same segment are
transmitted to the receiver while it is disconnected from the
sender. All these retransmissions are thus lost. Since the
retransmission timer at the sender is doubled with each
unsuccessful retransmission attempt (until it reaches 64 sec).

TCP energy consumed per Rx bit at 5m/s mobility rate (E-6J)

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 2. Energy consumed per received bit at 5m/s speed.

Thus, the energy consumed trying to retransmit the lost
packets while there is no valid route between the source and
the destination will be wasted. Besides, the sender might stay
in “back off” state for a while after re-establishing the lost link
due to lack of knowledge that there is a valid route to continue
the communication. As a result, TCP connection bandwidth
will be underutilized. Although that in both proactive routing
protocols, routing table updates are periodically transmitted
throughout the network in order to maintain table consistency.
DSDV tries to help alleviate the potentially large amount of
network traffic that such updates can generate. In DSDV,
route updates can employ two possible types of packets; the
first is known as a full dump. This type of packet carries all

available routing information. During periods of occasional
movement, these packets are transmitted infrequently. Instead,
smaller incremental packets are used to relay only that
information which has changed since the last full dump.
Thereby, decreasing the amount of traffic generated in the
network. We must note that, the way the routing protocol
updates its routing information may affect TCP connection
data flow. In other words, heavy routing updates or control
messages might lead to network congestion, provoking packet
loss for some TCP flows. Consequently, leads to extra energy
consumption in retransmitting lost packets.

TCP Average Connection Time at 5m/s mobility rate (Sec)

0,000

20,000

40,000

60,000

80,000

100,000

120,000

140,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 3. TCP Average connection time at 5m/s speed.

TCP Average Goodput at 5m/s mobility rate (Kbps)

0,000

10,000

20,000

30,000

40,000

50,000

60,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack1 TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 4. TCP Average Goodput at 5m/s speed.

That explains why DSDV routing protocol results in TCP less
energy consumption per received bit compared to OLSR [as
can be seen in Figure 2]. Distance vector protocols have
always less routing messages overhead than link state ones. In
addition, the bandwidth taken by routing update messages in
the network is found to be higher in the case of link state
routing protocols. This can be verified from Figure 4. We see
from the Figure that OLSR has lower goodput than DSDV.
This is due to the high routing messages overhead caused by
OLSR and on the numerous layer 2 contentions and
congestion periods that is led by this overhead. When
comparing OLSR and DSDV performances we can notice two
surprising aspects: Figure 3 illustrates that OLSR has the
shortest average connection time compared to the other
routing protocols while Figure 4 depicts that, all TCP variants
have the highest average goodput when combined with DSDV
routing protocol. This is explained by the fact that
simulations’ results show that the number of dead nodes in
OLSR case is more than those in DSDV simulation case. From

that, we can affirm that TCP nodes are run off battery much
faster in the case of OLSR which made TCP connections to
live shorter.
When analyzing the effect of reactive routing protocols, one
can expect that with nodes’ mobility; both DSR and AODV
would have heavy route discovery processes to maintain
network connectivity. This is confirmed by Figure 2 where we
can see that both AODV and DSR have the worst
performances compared to the proactive routing protocols.
From Figure 2, we also notice that DSR routing protocol
causes all TCP variants to consume less energy per received
bit compared to AODV. DSR is a source routing protocol
where the sender implies the entire forwarding path within the
packet header. Intermediate nodes forward data packets based
on source route. This in turn decreases the route discovery
process overhead at intermediate nodes. While in AODV
(hop-by-hop routing protocol), intermediate nodes maintain
routing tables and makes autonomous forwarding decisions.
Then, the use of route cache in DSR can speed up route
discovery, and reduce propagation of route requests. Thus,
limiting congestion conditions in the network and having the
chance to recover from link loss before sender’s RTO times
out. In the mean time, route cache in DSR also reduces the
time spent in link loss recovery (in the case when there is a
valid route to the destination in its cache). This may lead,
sometimes, to shorter average connection time than AODV, as
can be verified from Figure 3. We have to mention here, that
even route cache in DSR has a positive effect on TCP
performances; stale routes in the cache may cause TCP
performance degradation. This effect is not noticeable for
small scale mobility rates as can be verified by Figures 2 and 3
however we expect a decrease of DSR performances with the
increase of the mobility rate. This assumption will be verified
in the next sections.

4.2.2. TCP Performances at 15m/s mobility rate
Figure 5 shows that all TCP variants have less energy
consumption with proactive protocols than with reactive
protocols for the same reasons explained above. Additionally,
we notice that in most cases, AODV leads to high TCP energy
consumption per received bit. AODV has to trigger route
discovery process each time there is a broken link between any
two communicating nodes. Figure 5 depicts an interesting
result regarding TCP Vegas performances. In the case of this
TCP variant, we find that DSR increases TCP energy
consumption behind that of AODV. TCP Vegas tries to resend
any lost packet at the reception of the first duplicate
acknowledgement (does not wait for the third duplicate ACK
as most TCP variants). When the mobility of network nodes
increases, DSR cache would contain stale routes (as the routes
become invalid faster due to nodes mobility). TCP Vegas tries
to use the cached route. This might lead to more losses in the
network. Thus, more TCP energy consumed to recover from
frequent packet losses caused by using the cached stale routes.
We will see in the following that stale routes within DSR
routing cache would affect all TCP variants as nodes mobility
rate increases. This is an expected result. The number of stale
routes in DSR routing cache increases due to high dynamic

changes of network topology. Also, we mention here that the
way used to establish DSR’s routing cache might complicate
the problem of stale routes. Intermediate nodes can reply to
route requests with routes from their caches. Thus, a stale
route could be propagated through the network leading to
frequent link failures and consequently more packet losses.

TCP energy consumed per Rx bit at 15m/s mobility rate (E-6J)

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack1 TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 5. Energy consumed per received bit at 15m/s speed.

TCP Average Connection Time at 15m/s mobility rate (Sec)

0,000

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 6. TCP Average connection time at 15m/s speed.

TCP Average Goodput at 15m/s mobility rate (Kbps)

0,000

10,000

20,000

30,000

40,000

50,000

60,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack1 TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 7. TCP Average Goodput at 15m/s speed.

Figure 6 illustrates a surprising result where each TCP variant
has a different behavior in term of average connection time. In
fact, in this Figure the effect of ad hoc routing protocols are
hidden by the specificities of the analyzed TCP variants.
Hence, it is worth to note that, TCP New-Reno has the best
performance compared to other TCP variants. This is due the
fact that TCP New-Reno is able to handle a consecutives
packet loss more efficiently than TCP Tahoe and TCP Reno.

For TCP SACK, the time passed at the senders’ side in order
to deduce the lost packets from the SACK header increases as
the number of lost packets might increase with mobility rate.
Regarding TCP Vegas and TCP WestwoodNR, TCP New-
Reno congestion control algorithm is less complex than these
variants. In both variants, there will be more time consumed in
order to calculate the transmission window according to
network conditions. As there will be continuous network
topology changes due to mobility. The calculations will be
done frequently.
Figure 7 illustrates that, DSDV still outperforms other routing
protocols in term of TCP average goodput. This can be
explained by the behavior of proactive Distance Vector
protocols that recover from link losses more rapidly than
proactive one (cf. Section 4.2.1). In addition, it can be clearly
seen that, TCP average goodput decreases with nodes mobility
rate (as could be verified by comparing Figures 4 and 7).
When nodes mobility increases, link failures occur more
frequently leading to more data packet loss within the
network. Thus, underutilizes the available bandwidth. The
reader may refer to [3] for a more detailed study of TCP
variants performance, regarding to link losses.

4.2.3. TCP Performances at 30m/s mobility rate
Figure 8 illustrates the effect of high mobility rate on TCP
energy consumption per received bit when using different ad
hoc routing protocols. We can see from this figure that, DSDV
causes the least TCP energy consumption per received bit for
all studied TCP variants. This is due to the same reasons as
above (cf. Section 4.2.1). On the other hand, we notice that,
DSR routing protocol causes more TCP energy consumption
than AODV in most cases. This is due to the stale routes of
DSR routing caches that instead of enhancing performance (as
it is supposed to be), it degrades it. With many stale routes
within the DSR’s routing cache (that may propagate to other
nodes within the network), the result is more losses in the
network. Thus, TCP triggers its congestion control algorithm
more frequently with the increase of the mobility rate. Let us
now consider the particular case of TCP Vegas. Indeed, even
that TCP Vegas consumes less energy per received bit when
used with DSR than with AODV case. Simulations’ results
show that TCP Vegas has sent and received less data It is
worth to note that, at high mobility rate, the frequent changes
in network topology (due to nodes mobility) leads to unstable
RTT values between the communicating nodes. TCP Vegas
depends on measured RTT values in the network to adjust its
RTO timer and its transmission rate. Thus, might provoke
mistaken RTO timer or transmission rate calculations. If the
calculated RTO timer value is much less than the actual RTT
between the communicating nodes, that means sent packets
will be resent without need (unnecessary retransmissions). On
the other hand, if it is much longer than the actual RTT
between the communicating nodes, we would wait for
unnecessary long time to perceive that there is a lost packet.
We have to mention that TCP Vegas still contains Reno’s
coarse-grained timeout code in case its proper mechanisms fail
to recognize the loss. The low goodput of TCP Vegas, shown
in Figure 10, confirms that its transmission rate window was

not well dimensioned in this case, and we think that the
estimated RTO value is much less than the actual RTT in most
of the cases (as explained above). Regarding TCP average
connection time, Figure 9 depicts that the average connection
time of TCP sessions differs with the TCP variant.

TCP energy consumed per Rx bit at 30m/s mobility rate (E-6J)

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack1 TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 8. Energy consumed per received bit at 30m/s speed.

TCP Average Connection Time at 30m/s mobility rate (Sec)

0,000

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 9. TCP Average connection time at 30m/s speed.

TCP Average Goodput at 30m/s mobility rate (Kbps)

0,000

10,000

20,000

30,000

40,000

50,000

60,000

TCP-Tahoe TCP-Reno TCP-Newreno TCP-Sack1 TCP-
WestwoodNR

TCP-Vegas

AODV

DSR

DSDV

OLSR

Figure 10. TCP Average Goodput at 30m/s speed.

For example, with some variants (i.e. TCP Tahoe, TCP Reno,
TCP New-Reno, and TCP SACK), both reactive protocols lead
to less average connection time than proactive ones. On the
other hand, Figure 10 illustrates that these variants have better
goodput at high mobility rate than at low mobility rates. This
can be viewed as an interesting result. Actually, if the
communicating nodes are moving in such a way that there is
always a direct communication path between them; this would
improve the bandwidth utilization over TCP connection.

Consequently, leads to higher goodput over the connection. We
must mention here, that a similar result was found by the
authors of [8]. In [8] the authors studied TCP Reno
performance over a mobile ad hoc network using DSR as
routing protocol. From our observations, we might generalize
this result for almost all TCP variants with different ad hoc
routing protocols. From Figures 8, 9 and 10, we conclude that
both proactive protocols (DSDV and OLSR) have certain
stability within the network (in terms of energy consumption
per received bit and average goodput) over the reactive
protocols (AODV and DSR). Since the control traffic of both
proactive protocols is continuous and periodic, it keeps the
network links more stable, where reactive protocols, with
bursty flooding for route discoveries and repairs, may cause
numerous collisions on network links.

5. CONCLUSION AND FUTURE WORK
It was proved that TCP performance is highly influenced by
the dynamic nature of mobile ad hoc networks, due to nodes
mobility. Also, the choice of ad hoc routing protocol to be
implemented within the network affects TCP behavior within
this network. Indeed, on the one hand, the overhead of control
messages caused by the routing protocol might lead to
network congestion. Thus, enforces TCP to trigger its
congestion control algorithm. On the other hand, the route
recovery approach used by a particular ad hoc routing protocol
can either have a good or a side effect on TCP behavior.
Hence, if the route recovery time needed by the routing
protocol to re-establish a broken link is shorter than RTO
timer of TCP, TCP will not experience packet loss. Otherwise,
TCP sender recognizes the packet loss through RTO timer.
This latter will lead TCP to react inadequately to the packet
loss by triggering its congestion control algorithm.
Regarding mobility of nodes at mobile ad hoc networks, it was
interesting to find that nodes’ mobility is not always a
degradation factor of TCP performance. Sometimes, mobility
might help ad hoc routing protocols to re-establish broken
links faster. This prevents TCP sender’s congestion control
algorithm to start. The importance of choosing the right
mobility rate still needs some research. As a general result, we
found that DSDV could be the best choice to be implemented
when using TCP within mobile ad hoc networks. Indeed, it
proved to be the best performing routing protocol with all TCP
variants within mobile ad hoc environment. DSDV, as
proactive and distance vector routing protocol, includes all
available routes towards any destination in the network in its
routing table. In the presented work, we studied the behavior
of TCP variants in mobile ad hoc networks by varying the ad
hoc routing protocol and nodes’ mobility rate. In the above
simulations, we were not able to measure accurately the idle
energy of TCP variants. NS-2 does not apply the idle energy
consumption of TCP. In order to find the total energy
consumption of each TCP variant (including both idle energy
and communication energy), we intend in our future work to
study the idle energy consumed by each TCP variant by the
means of real test-bed experiments.

REFERENCES
[1] V. Ramarathinam, M. A. Labrador, «Performance Analysis of TCP over

Static Wireless ad hoc networks», In ISCA 15th International
Conference on Parallel and Distributed Computing Systems, PDCS’02,
Sep. 2002.

[2] V. Tsaoussidis, A. Lahanas and C. Zhang, «The Wave and Probe
Communication mechanisms», The Journal of Supercomputing Kluwer
Academic Publishers, Vol. 20, No 2, Sep. 2001.

[3] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci, « A
Performance Study of TCP variants in terms of Energy Consumption
and Average Goodput within a Static Ad Hoc Environment », To appear
in the 2nd ACM International Wireless Communications and Mobile
Computing Conference, IWCMC’06,Jul. 2006.

[4] J. Liu, S. Singh, «ATCP: TCP for Mobile Ad Hoc Networks», IEEE
Journal on Selected Areas in Communications, Vol. 10, No 7, Jul. 2001.

[5] M. Zorzi and R. Rao, «Energy Efficiency of TCP in a local wireless
environment», Mobile Networks and Applications, Vol. 6, No. 3, July
2001.

[6] S. Agrawal and S. Singh, «An Experimental Study of TCP’s Energy
Consumption over a Wireless Link», 4th European Personal Mobile
Communications Conference, EPMCC’02, Feb. 2002.

[7] H. Singh and S. Singh, «Energy consumption of TCP Reno, New Reno,
and SACK in multi-hop wireless networks», In ACM SIGMETRICS’02,
Jun. 2002.

[8] [HOL 99] G. Holland and N. Vaidya, «Analysis of TCP performance
over mobile ad hoc networks», in 5th annual ACM/IEEE International
Conference on Mobile Computing and Networking, ICMCN’99, Aug.
1999.

[9] H. Singh, S. Saxena, and S. Singh, «Energy Consumption of TCP in Ad
Hoc Networks», J. Wireless Networks, Vol. 10, No. 5, Sep. 2004.

[10] M. Allman, V. Paxon, W. Stevens, «TCP Congestion Control», RFC
2581, IETF, Apr. 1999.

[11] V. Jacobson., «Congestion avoidance and control», In ACM
SIGCOMM’88 symposium on communications architectures and
protocols, Vol. 18, No. 4, Aug. 1988.

[12] V. Jacobson., «Modified TCP Congestion avoidance Algorithm»,
end2end-interest mailing list, 30 Apr. 1990.
(ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail).

[13] K. Fall and S. Floyd., «Simulation-based comparison of Tahoe, Reno,
and sack TCP», in ACM Computer Communications Review, Jul. 1996.

[14] J. Hoe., «Start-up Dynamics of TCP’s Congestion Control and
Avoidance Scheme », Master’s thesis, MIT, Jun.1995.

[15] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, «TCP
Westwood: Bandwidth Estimation for enhanced transport over wireless
links», 7th annual International Conference on Mobile Computing and
Networking, ICMCN’01, Jul. 2001.

[16] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson «TCP
Vegas: New Techniques for Congestion Detection and Avoidance»,
ACM SIGCOMM’94, Aug. 1994.

[17] C. E. Perkins and P. Bhagwat, «Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers», ACM
Computer Communications Review, Oct.1994.

[18] L. R. Ford Jr. and D. R. Fulkerson, «Flows in Networks», Princeton
Univ. Press, 1962.

[19] T. Clausen, «Comparative Study of Routing Protocols for Mobile Ad-
Hoc NETworks», Research Report, RR-5135, INRIA, Mar. 2004.

[20] C. E. Perkins and E. M. Royer, «Ad-hoc On-Demand Distance Vector
Routing», In 2nd IEEE Wksp. Mobile Comp. Sys. And Apps,
WMCSA’99, Feb. 1999.

[21] D. B. Johnson and D. A. Maltz «Dynamic Source Routing in Ad Hoc
Wireless Networks». In Mobile Computing, T. Imielinski and H. Korth,
editors, Chapter 5, pp. 153-181, Kluwer Academic Publishers, 1996.

[22] J. Broch, D. Johnson, and D. Maltz, « The dynamic source routing
protocol for mobile ad hoc networks», Internet draft, IETF Mobile Ad
Hoc Networking Working Group, Dec. 1998.

[23] A. Aaron and J. Weng, «Performance Comparison of Ad-hoc Routing
Protocols for Networks with Node Energy Constraints», EE 360 Class
Project, Stanford University, Spring 2000-2001.

[24] Network Simulator-NS-2. Available at www.isi.edu/nsnam/ns/
[25] V. Tsaoussidis et al., «Energy/Throughput Tradeoffs of TCP Error

Control Strategies», 5th IEEE Symp. Computers and Communications,
ISCC’00, Jul. 2000.

