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Abstract- TCP was mainly developed to be deployed within 
wired networks. Recently, many researches have studied its 
performance within Mobile Ad hoc Networks (MANETs). The 
research results found that TCP performance are highly 
influenced by the characteristics of such networks. This is due to 
the manner that TCP uses to implement reliability and its 
inability to distinguish between different packet loss reasons. 
Indeed, unlike wired networks, where packet loss is mainly 
caused by network congestion, in MANETs we could have many 
other reasons to lose a data packet. However, TCP considers that 
all packet losses are due to network congestion. This enforces 
TCP to be aggressive in front of certain types of packet loss. 
Packet losses in MANETs can be either related to the wireless 
communication environment (i.e. the effect of fading, 
interferences, multi-path routing, etc.) or to the dynamic nature 
of such networks (i.e. link failures, network partitioning). This 
latter could be due to the node mobility or to the node battery 
depletion. This could lead to frequent route re-computation 
within the network. In this work, we intend to study the effect of 
ad hoc routing protocols on TCP performance (energy 
consumption and average goodput1) within MANETs. We 
consider in our study different types of ad hoc routing protocols 
having different characteristics: reactive vs. proactive, distance 
vector vs. link state, and source routing. Our study results show 
that; DSDV as a proactive distance vector routing protocol leads 
to the most acceptable TCP performance results and this is 
confirmed at different mobility levels. 

1. INTRODUCTION 
Wireless ad hoc networks have been proposed as the 
networking solution for those situations where the network set 
up time is a major constraint and/or a networking 
infrastructure is either not available or not desirable. Ad hoc 
networks allow mobile devices to exchange information using 
their wireless infrastructure without the need of a fixed 
infrastructure. Every device in wireless ad hoc networks takes 
the role of an end system, a server, a router, a gateway, etc., or 
all of them at the same time. It is expected that the 
performance of TCP will be affected considerably in ad hoc 
networks not only due to the effects of the wireless 
environment but also due to specific issues like mobility, 
routing, and energy constrains [1]. In mobile networks, such 
as MANETs, TCP displays some undesirable patterns of 
behavior in the context of efficient energy expenditure because 
of its reliability feature [2]. As an example, high channel 
                                                 
1 The amount of data correctly received during a given time of period. 

delays in a mobile network, causing the TCP timer to expire, 
will force TCP to unnecessarily retransmit the delayed packet 
and to consume more time and energy resulting in network 
performance degradation. The performance of mobile ad hoc 
networks depends on many factors such as node mobility 
model, traffic pattern, network topology, obstacle positions, 
and so on. To better understand the effect of these factors, we 
classify them into two categories: those inherited from the 
wireless environment and others due to the mobile ad hoc 
characteristics itself. In a previous work [3], a complete 
analysis of the main TCP variants behavior has been realized 
in regards to the wireless environment characteristics. In the 
current work, our objective is to analyze the effect of the 
routing protocol on TCP performances in MANETs. 

In the following, we present some of the most important issues 
related to the routing protocol in a mobile ad hoc network. 
When an old route is no longer available, the network layer at 
the sender attempts to find a new route to the destination. It is 
possible that discovering a new route may take significantly 
longer than the retransmission timeout interval (RTO) at the 
sender. As a result, the TCP sender times out, retransmits a 
packet and invokes congestion control. Thus, when a new 
route is discovered, the throughput will continue to be small 
for some time because TCP at the sender grows its congestion 
window using the slow start and congestion avoidance 
algorithms. This is clearly undesirable behavior because the 
TCP connection will be very inefficient. If we imagine a 
network in which route computations are done frequently (due 
to high mobility), the TCP connection will never get an 
opportunity to transmit at the maximum negotiated rate (the 
congestion window will always be significantly smaller than 
the advertised window size from the receiver) [4]. In addition, 
it is likely that the ad hoc network may periodically get 
partitioned for several seconds at a time. If the sender and the 
receiver of a TCP connection lie in different partitions, all the 
sender’s packets get dropped by the network resulting in the 
sender invoking congestion control. If the partition lasts for a 
significant amount of time (say several times longer than the 
RTO), the situation gets even worse because of phenomena 
called serial timeouts. A serial timeout is a condition wherein 
multiple consecutive retransmissions of the same segment are 
invoked while the receiver is disconnected from the sender. 
All these retransmissions are thus lost. Since the 
retransmission timer at the sender is doubled with each 



unsuccessful retransmission attempt (until it reaches 64 sec), 
several consecutive failures can lead to inactivity lasting for a 
while even when the sender and receiver get reconnected [4]. 
All the above situations can be a result of the dynamic nature 
of MANETs (i.e. nodes mobility or battery depletion). In order 
to study TCP performance over MANETs, it is important to 
analyze the effect of most common ad hoc routing protocols in 
such networks. Ad hoc routing protocols are responsible of re-
establishing lost links within the network and reconnecting 
partitioned ones. Then, it is obvious that the behavior of these 
routing protocols will affect TCP performance. In this paper, 
we focus our attention on studying the impact of different ad 
hoc routing protocols on the energy efficiency as well as the 
obtained goodput of the six major TCP variants (Tahoe, Reno, 
New-Reno, SACK, Vegas, and WestwoodNR). More 
precisely, we will consider the effect of four ad hoc routing 
protocols those following different design principals. These 
protocols are: AODV (Ad-Hoc On-Demand Distance Vector) 
which is a reactive distance vector protocol, DSR (Dynamic 
Source Routing) a reactive source routing protocol, DSDV 
(Destination-Sequenced Distance Vector) a proactive distance 
vector protocol, and finally OLSR (Optimized Link State 
Routing) a proactive link state protocol. 
The remainder of this paper is organized as follows: after 
presenting the motivation behind our current work in section 
2, section 3 overviews each TCP variant as well as the 
different ad hoc routing protocols, section 4 presents TCP 
performance in terms of energy consumption and average 
goodput with respect to different ad hoc routing protocols. 
Finally, we summarize the main results of this work and give 
some ideas for future work. 

2. MOTIVATION 
Recently, many researchers have studied TCP performance in 
terms of energy consumption and average goodput within 
wireless mobile networks [5][6][7]. It was proved that the 
performance of TCP degrades considerably in mobile ad hoc 
networks environment, due to the specific issues related to 
those environments [8]. Many research projects were 
specifically interested in studying TCP performances (energy 
consumption and/or goodput) within such environments [7][9]. 
However, none of them compared more than three TCP variants 
over a widest set of realistic scenarios. In this paper, we aim to 
make a clear comparison between the most common TCP 
variants. The behavior of ad hoc routing protocols in face of the 
dynamic nature of ad hoc networks can have an effect on these 
performances. Thus, this comparative study takes place using 
different ad hoc routing protocols. This study concentrates on 
analyzing the effects of these protocols whilst the mobility rate 
is varied. We make our simulations using a large number of 
nodes, in order to realize the effect of losing a non-adjacent 
node on both (i) the energy consumption of the other nodes in 
the network and (ii) the goodput obtained by TCP connections. 
The aim of this study is to help understanding the impact of the 
different ad hoc routing protocols and node mobility on TCP 
performance in MANETs. Thus, obtained results can be used as 
a guideline of the interactions between TCP and ad hoc routing 
protocols in MANETs.  

3. BACKGROUND 
As our study relates to the main TCP variants and ad hoc 
routing algorithms these are described briefly in the following 
sub-sections: 
 
3.1. Overview of TCP Variants 
3.1.1. TCP Tahoe  
TCP Tahoe is the first TCP variant that incorporates 
congestion control mechanisms. Indeed its implementation 
added a number of new algorithms and refinements to earlier 
implementations. Mainly these algorithms and refinements 
are: Slow-Start, Congestion Avoidance, and Fast Retransmit 
[10][11]. The goal of slow-start and congestion avoidance is to 
keep the congestion window2 size around optimal size as 
much as possible. Slow-start increases the congestion window 
(CWND) size rapidly to reach maximum safety transfer rate 
(SSThresold) as fast as possible and congestion avoidance 
increases the CWND slowly to avoid packet losses as long as 
possible. If a packet is not acknowledged after a predefined 
timeout, Retransmission TimeOut (RTO), it is regarded as lost 
and is retransmitted. On the other hand, at the reception of 
three duplicate3 ACKs, the first unacknowledged packet is 
also considered as lost. In this case, the Fast Retransmit 
algorithm is in charge of retransmitting the lost packet without 
waiting for the RTO. This latest speeds-up the lost packet 
retransmission. Finally, note that in both situations, the packet 
retransmission is followed by a reduction of both the 
SSThresh, to CWND/2, and the CWND to its minimum 
(CWND= 1 segment). The slow start phase is then triggered. 

3.1.2. TCP Reno 
The congestion control mechanisms of TCP Reno, the most 
popular TCP implementation, retains the enhancements 
incorporated into TCP Tahoe, but modifies the Fast 
Retransmit operation to include Fast Recovery [12]. The 
Slow-Start and the Congestion Avoidance algorithms are used 
by a TCP Reno sender to control the amount of data injected 
into the network while the Fast Retransmit and the Fast 
Recovery are used to recover from packet losses without the 
need for RTOs [13]. Fast Recovery algorithm reacts after a 
packet loss discovered by a three duplicate ACKs. Then it 
halves the congestion window instead of decreasing it to 
minimum as in TCP Tahoe. 

3.1.3. TCP New-Reno 
TCP New-Reno includes a small change to the Reno algorithm 
at the sender [14]. This change concerns the sender’s behavior 
during Fast Recovery when a partial ACK is received. A 
partial ACK is the acknowledgment that can be received in 
response to a lost-packet retransmission. This one do not 
acknowledges all the packets that were outstanding at the start 
of the Fast Recovery period but acknowledges only some of 
them. This means that there are multiple losses in the same 
window of data. In TCP Reno, partial ACKs take TCP out of 
Fast Recovery by deflating the usable window back to the size 

                                                 
2 Maximum amount of data that can be sent out over a connection without 
being acknowledged. 
3 TCP receivers generate a duplicate ACK when out-of-sequence segment is 
received. 



of the congestion window. In TCP New-Reno, partial ACKs 
do not take TCP out of Fast Recovery. Instead, partial ACKs 
received during Fast Recovery are treated as an indication that 
the packet immediately following the acknowledged packet in 
the sequence space has been lost, and should be retransmitted. 
Thus, when multiple packets are lost from a single window of 
data, New-Reno can recover without a retransmission timeout, 
retransmitting one lost packet per round-trip time (RTT) until 
all of the lost packets from the window have been 
retransmitted. TCP New-Reno remains in Fast Recovery until 
all of the data outstanding when Fast Recovery was initiated 
has been acknowledged [13]. 

3.1.4. TCP SACK 
Traditional implementations of TCP use an acknowledgement 
number field that contains a cumulative acknowledgement, 
indicating that the TCP receiver has received all of the data up 
to the indicated byte. A selective acknowledgement option 
allows receivers to additionally report non-sequential data they 
have received. The SACK option is used in an ACK packet to 
indicate which packets were received precisely [13] and thus 
allows to deduce which packets had been lost. This option 
aims to speed up the the retransmission of lost packets. This 
will in turn avoid retransmitting the whole window of data. 

3.1.5. TCP WestwoodNR 
TCP Westwood is a sender-side modification of the TCP 
congestion window algorithm that is intended to improve upon 
the performance of TCP New-Reno and TCP Reno in wired as 
well as wireless networks. In fact, there are two variants of 
TCP-Westwood, one is based on TCP Reno and the other is 
based on TCP New-Reno. Our study uses this latter (depicted 
as TCP WestwoodNR). The improvement is also targeted to 
be most significant in wireless networks with lossy links. 
Indeed, TCP WestwoodNR [15] relies on end-to-end 
bandwidth estimation to discriminate the cause of packet loss 
(congestion or wireless channel effect). This discrimination is 
based on measured RTT values.  

3.1.6. TCP Vegas 
TCP Vegas extends Reno’s retransmission mechanisms. It 
relies on measured RTT values of sent packets. According to 
this measurement, Vegas may decide to retransmit a packet 
[16] before reaching RTO. When a duplicate ACK is received, 
Vegas checks to see if the difference between the current time 
and the timestamp recorded for the first un-acknowledged 
segment (i.e. its RTT) is greater than the timeout value. If it is, 
then Vegas retransmits the segment without having to wait for 
three duplicate ACKs. Also, TCP Vegas uses RTT values to 
calculate the actual transmission rate in the network. Hence, 
by comparing that value by the expected goodput in the 
network, TCP Vegas decides how to modify its transmission 
rate.  

3.2. Overview of Ad Hoc Routing Protocols 
3.2.1. DSDV 
The Destination-Sequenced Distance-Vector Routing protocol 
(DSDV) described in [17] is a table-driven proactive algorithm 
based on the classical Bellman-Ford routing mechanism [18]. 
The improvements made to the Bellman-Ford algorithm 

include freedom from loops in routing tables. Every mobile 
node in the network maintains a routing table in which all of 
the possible destinations within the network and the number of 
hops to each destination are recorded. Each entry is marked 
with a sequence number assigned by the destination node. The 
sequence numbers enable the mobile nodes to distinguish stale 
routes from new ones, thereby avoiding the formation of 
routing loops. Routing table updates are periodically 
transmitted throughout the network in order to maintain table 
consistency. To help alleviate the potentially large amount of 
network traffic that such updates can generate, route updates 
can employ two possible types of packets. The first is known 
as a full dump. This type of packet carries all available routing 
information and can require multiple network protocol data 
units (NPDUs). During periods of occasional movement, these 
packets are transmitted infrequently. Smaller incremental 
packets are used to relay only that information which has 
changed since the last full dump. Each of these broadcasts 
should fit into a standard-size NPDU, thereby decreasing the 
amount of traffic generated. Every node keeps a route table 
(Destination-address, Metric, and Sequence-number) for every 
possible destination. 

3.2.2. OLSR 
The Optimized Link-State Routing Protocol (OLSR) is a 
proactive link-state routing protocol, employing periodic 
message exchange to update topological information in each 
node in the network, so the routes are always immediately 
available when needed. While having some commonalities 
with OSPF, OLSR is specially designed to operate in the 
context of ad hoc networks, i.e. in bandwidth-constrained, 
dynamic networks. The OLSR protocol applies an optimized 
flooding mechanism, called MPR-flooding, (Multipoint 
Relays) to minimize the problem of duplicate reception of 
message within a region. The MPR flooding mechanism is 
directly used by OLSR for diffusing topological information 
to the network [19]. 

3.2.3. AODV  
The Ad Hoc On-Demand Distance Vector (AODV) routing 
protocol described in [20] builds on the DSDV algorithm 
previously described. AODV is an improvement on DSDV 
because it typically minimizes the number of required 
broadcasts by creating routes on an on-demand basis, as 
opposed to maintaining a complete list of routes as in the 
DSDV algorithm. The authors of AODV classify it as a pure 
on demand route acquisition system, since nodes that are not 
on a selected path do not maintain routing information or 
participate in routing table exchanges [20]. When a source 
node desires to send a message to some destination node and 
does not already have a valid route to that destination, it 
initiates a path discovery process to locate the other node. It 
broadcasts a route request (RREQ) packet to its neighbors, 
which then forward the request to their neighbors, and so on, 
until either the destination or an intermediate node with a 
“fresh enough” route to the destination is located. Once the 
RREQ reaches the destination or an intermediate node with a 
fresh enough route, the destination/intermediate node responds 
by unicasting a route reply (RREP) packet back to the 



neighbor from which it first received the RREQ. This RREP is 
than unicasted from neighbor to another until reaching the 
source node. Hence, all the nodes participating to the route 
will have the ability to update their routing tables accordingly. 

3.2.4. DSR 
The Dynamic Source Routing (DSR) protocol presented in 
[21] is an on-demand routing protocol that is based on the 
concept of source routing. Mobile nodes are required to 
maintain route caches that contain the source routes of which 
the mobile is aware. Entries in the route cache are continually 
updated as new routes are learned. The protocol consists of 
two major phases: route discovery and route maintenance. 
When a mobile node has a packet to send to some destination, 
it first consults its route cache to determine whether it already 
has a route to the destination. If it has an unexpired route to 
the destination, it will use this route to send the packet. On the 
other hand, if the node does not have such a route, it initiates 
route discovery by broadcasting a route request packet. This 
route request contains the address of the destination, along 
with the source node’s address and a unique identification 
number. Each node receiving the packet checks whether it 
knows of a route to the destination. If it does not, it adds its 
own address to the route record of the packet and then 
forwards the packet along its outgoing links. A route reply is 
generated when the route request reaches either the destination 
itself, or an intermediate node which contains in its route 
cache an unexpired route to the destination [22]. DSR has the 
advantage that no routing tables must be kept to route a given 
packet, since the entire route is contained in the packet header. 
The caching of any initiated or overheard routing data can 
significantly reduce the number of control messages being 
sent, reducing overhead. The primary disadvantages of DSR 
are that it is not scalable to large networks, and that it requires 
significantly more processing resources than most other 
protocols. In order to obtain routing information, each node 
must spend much more time processing any control data it 
receives, even if it is not the intended recipient [23]. DSR does 
not use any periodic routing advertisements, link status 
sensing, or neighbor detection packets. Also, it does not rely 
on these functions from any underlying protocols in the 
network.  

4. AD HOC ROUTING PROTOCOLS’ EFFECTS ON TCP PERFORMANCE IN 

MANET 
In this section we study the performance of different TCP 
variants in terms of energy consumption and average goodput 
within wireless mobile ad hoc networks. We take into 
consideration the effect of different ad hoc routing protocols by 
implementing the most common ones and analyzing TCP 
performance regarding to the behavior of each ad hoc routing 
protocol when this one have to recover a link failure and how 
this action could affect TCP performance. We study the 
performances regarding two common factors that may affect 
TCP performances within such environments: (i) the choice of 
ad routing protocol (ii) the nodes' mobility rate.  

4.1. Simulation Results 
Our simulations are realized using the Network Simulator 
version 2 (NS-2) [24]. Each simulation consists of a network 
of 20 nodes confined in a (670 x 670) m² area. These nodes 
are randomly positioned in the simulation area. 14 TCP 
connections were established (ftp traffic used with a packet 
size of 512 bytes) between the nodes. The source-destination 
pairs for FTP sessions were chosen randomly. They are shown 
in Figure 1. 

 

Figure 1. Network topology and FTP session. 

 The simulation time is set to 400 seconds. The initial battery 
capacity of each node is 10 joules. This initial energy is 
reduced progressively by data transmission and reception 
(which includes also the retransmission and forwarding). We 
consider the simple case where the transmission and reception 
of a packet consumes a fixed amount of energy from the 
node’s battery. We fix the amount of energy to be consumed 
per each transmitted packet at 0.6 watt, and that for each 
received packet at 0.3 watt. When the initial energy reaches 
zero joules, the corresponding node cannot take part anymore 
in the communication, and is regarded as dead. Note that a 
node death can lead to routes reorganizations in the network. 
To study the effect of different routing algorithms on TCP 
performances, we aim to study both reactive and proactive 
routing protocols. In order to study the effect of nodes' 
mobility in MANETs on TCP performance, we use three 
different values of mobility rates (5m/s, 15m/s, and 30m/s). 
All nodes communicate with identical wireless radios using 
the standard MAC 802.11 which have a bandwidth of 2Mbps 
and a radio propagation range of 250 meters. In this work, we 
study three TCP performance parameters: the first one is the 
energy consumed in transmission, reception, forwarding and 
retransmission of packets. This energy is calculated 
proportionally to the amount of received data. Thus, it is 
defined as energy consumed per received bit. The second one 
is the average connection duration of TCP sessions. Note that, 
it was demonstrated in the literature [25] that this connection 
duration is proportional to the energy consumed at each node 
listening to the radio channel plus that consumed to execute 
the recovery mechanisms associated to each TCP (Timeouts, 
CWND threshold adjustments, etc.). This sum is called idle 
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energy in the following. The third parameter studied is the 
average TCP goodput. 

4.2. Effect of Routing Protocols 
4.2.1. TCP Performances at 5m/s mobility rate  
Figure 2 shows that, at 5m/s mobility rate, proactive protocols 
help TCP to have best performance in terms of energy 
consumption per received bit compared to reactive routing 
protocols. The fact that proactive protocols include all the 
available routes towards any destination in the network into 
routing tables, helps reducing the route recovery time spent in 
the network. We must note here that, the longer the route 
recovery time is the most probable that TCP sender’s RTO 
timer expires. That enforces triggering TCP congestion control 
algorithm. Thus, decreasing the CWND, and entering “slow-
start” phase. On the other hand, reactive protocols do not start 
a route discovery process unless it’s needed by the source 
node. That may lead to higher latency in route recovery 
process. In other words, TCP sender’s RTO timer might expire 
before that the routing protocol can recover from lost link. 
Here, TCP sender will not be able to know about the route 
recovery and it may stay in the “back off” state even that there 
is a recovered route towards the destination. Moreover, the 
case may become worse if the route recovery process longs for 
more than RTO timer. TCP enters into a “serial timeouts 
phenomena”. A serial time out is a condition wherein multiple 
consecutive retransmissions of the same segment are 
transmitted to the receiver while it is disconnected from the 
sender. All these retransmissions are thus lost. Since the 
retransmission timer at the sender is doubled with each 
unsuccessful retransmission attempt (until it reaches 64 sec). 

TCP energy consumed per Rx bit at 5m/s mobility rate (E-6J)
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Figure 2. Energy consumed per received bit at 5m/s speed.  

Thus, the energy consumed trying to retransmit the lost 
packets while there is no valid route between the source and 
the destination will be wasted. Besides, the sender might stay 
in “back off” state for a while after re-establishing the lost link 
due to lack of knowledge that there is a valid route to continue 
the communication. As a result, TCP connection bandwidth 
will be underutilized. Although that in both proactive routing 
protocols, routing table updates are periodically transmitted 
throughout the network in order to maintain table consistency. 
DSDV tries to help alleviate the potentially large amount of 
network traffic that such updates can generate. In DSDV, 
route updates can employ two possible types of packets; the 
first is known as a full dump. This type of packet carries all 

available routing information. During periods of occasional 
movement, these packets are transmitted infrequently. Instead, 
smaller incremental packets are used to relay only that 
information which has changed since the last full dump. 
Thereby, decreasing the amount of traffic generated in the 
network. We must note that, the way the routing protocol 
updates its routing information may affect TCP connection 
data flow. In other words, heavy routing updates or control 
messages might lead to network congestion, provoking packet 
loss for some TCP flows. Consequently, leads to extra energy 
consumption in retransmitting lost packets. 

TCP Average Connection Time at 5m/s mobility rate (Sec)
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Figure 3. TCP Average connection time at 5m/s speed. 

TCP Average Goodput at 5m/s mobility rate (Kbps)
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Figure 4. TCP Average Goodput at 5m/s speed. 

That explains why DSDV routing protocol results in TCP less 
energy consumption per received bit compared to OLSR [as 
can be seen in Figure 2]. Distance vector protocols have 
always less routing messages overhead than link state ones. In 
addition, the bandwidth taken by routing update messages in 
the network is found to be higher in the case of link state 
routing protocols. This can be verified from Figure 4. We see 
from the Figure that OLSR has lower goodput than DSDV. 
This is due to the high routing messages overhead caused by 
OLSR and on the numerous layer 2 contentions and 
congestion periods that is led by this overhead. When 
comparing OLSR and DSDV performances we can notice two 
surprising aspects: Figure 3 illustrates that OLSR has the 
shortest average connection time compared to the other 
routing protocols while Figure 4 depicts that, all TCP variants 
have the highest average goodput when combined with DSDV 
routing protocol. This is explained by the fact that 
simulations’ results show that the number of dead nodes in 
OLSR case is more than those in DSDV simulation case. From 



that, we can affirm that TCP nodes are run off battery much 
faster in the case of OLSR which made TCP connections to 
live shorter. 
When analyzing the effect of reactive routing protocols, one 
can expect that with nodes’ mobility; both DSR and AODV 
would have heavy route discovery processes to maintain 
network connectivity. This is confirmed by Figure 2 where we 
can see that both AODV and DSR have the worst 
performances compared to the proactive routing protocols. 
From Figure 2, we also notice that DSR routing protocol 
causes all TCP variants to consume less energy per received 
bit compared to AODV. DSR is a source routing protocol 
where the sender implies the entire forwarding path within the 
packet header. Intermediate nodes forward data packets based 
on source route. This in turn decreases the route discovery 
process overhead at intermediate nodes. While in AODV 
(hop-by-hop routing protocol), intermediate nodes maintain 
routing tables and makes autonomous forwarding decisions. 
Then, the use of route cache in DSR can speed up route 
discovery, and reduce propagation of route requests. Thus, 
limiting congestion conditions in the network and having the 
chance to recover from link loss before sender’s RTO times 
out. In the mean time, route cache in DSR also reduces the 
time spent in link loss recovery (in the case when there is a 
valid route to the destination in its cache). This may lead, 
sometimes, to shorter average connection time than AODV, as 
can be verified from Figure 3. We have to mention here, that 
even route cache in DSR has a positive effect on TCP 
performances; stale routes in the cache may cause TCP 
performance degradation. This effect is not noticeable for 
small scale mobility rates as can be verified by Figures 2 and 3 
however we expect a decrease of DSR performances with the 
increase of the mobility rate. This assumption will be verified 
in the next sections.  

4.2.2. TCP Performances at 15m/s mobility rate  
Figure 5 shows that all TCP variants have less energy 
consumption with proactive protocols than with reactive 
protocols for the same reasons explained above. Additionally, 
we notice that in most cases, AODV leads to high TCP energy 
consumption per received bit. AODV has to trigger route 
discovery process each time there is a broken link between any 
two communicating nodes. Figure 5 depicts an interesting 
result regarding TCP Vegas performances. In the case of this 
TCP variant, we find that DSR increases TCP energy 
consumption behind that of AODV. TCP Vegas tries to resend 
any lost packet at the reception of the first duplicate 
acknowledgement (does not wait for the third duplicate ACK 
as most TCP variants). When the mobility of network nodes 
increases, DSR cache would contain stale routes (as the routes 
become invalid faster due to nodes mobility). TCP Vegas tries 
to use the cached route. This might lead to more losses in the 
network. Thus, more TCP energy consumed to recover from 
frequent packet losses caused by using the cached stale routes. 
We will see in the following that stale routes within DSR 
routing cache would affect all TCP variants as nodes mobility 
rate increases. This is an expected result. The number of stale 
routes in DSR routing cache increases due to high dynamic 

changes of network topology. Also, we mention here that the 
way used to establish DSR’s routing cache might complicate 
the problem of stale routes. Intermediate nodes can reply to 
route requests with routes from their caches. Thus, a stale 
route could be propagated through the network leading to 
frequent link failures and consequently more packet losses.  
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Figure 5. Energy consumed per received bit at 15m/s speed. 
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Figure 6. TCP Average connection time at 15m/s speed. 
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Figure 7. TCP Average Goodput at 15m/s speed. 

Figure 6 illustrates a surprising result where each TCP variant 
has a different behavior in term of average connection time. In 
fact, in this Figure the effect of ad hoc routing protocols are 
hidden by the specificities of the analyzed TCP variants. 
Hence, it is worth to note that, TCP New-Reno has the best 
performance compared to other TCP variants. This is due the 
fact that TCP New-Reno is able to handle a consecutives 
packet loss more efficiently than TCP Tahoe and TCP Reno. 



For TCP SACK, the time passed at the senders’ side in order 
to deduce the lost packets from the SACK header increases as 
the number of lost packets might increase with mobility rate. 
Regarding TCP Vegas and TCP WestwoodNR, TCP New-
Reno congestion control algorithm is less complex than these 
variants. In both variants, there will be more time consumed in 
order to calculate the transmission window according to 
network conditions. As there will be continuous network 
topology changes due to mobility. The calculations will be 
done frequently.  
Figure 7 illustrates that, DSDV still outperforms other routing 
protocols in term of TCP average goodput. This can be 
explained by the behavior of proactive Distance Vector 
protocols that recover from link losses more rapidly than 
proactive one (cf. Section 4.2.1). In addition, it can be clearly 
seen that, TCP average goodput decreases with nodes mobility 
rate (as could be verified by comparing Figures 4 and 7). 
When nodes mobility increases, link failures occur more 
frequently leading to more data packet loss within the 
network. Thus, underutilizes the available bandwidth. The 
reader may refer to [3] for a more detailed study of TCP 
variants performance, regarding to link losses. 

4.2.3. TCP Performances at 30m/s mobility rate  
Figure 8 illustrates the effect of high mobility rate on TCP 
energy consumption per received bit when using different ad 
hoc routing protocols. We can see from this figure that, DSDV 
causes the least TCP energy consumption per received bit for 
all studied TCP variants. This is due to the same reasons as 
above (cf. Section 4.2.1). On the other hand, we notice that, 
DSR routing protocol causes more TCP energy consumption 
than AODV in most cases. This is due to the stale routes of 
DSR routing caches that instead of enhancing performance (as 
it is supposed to be), it degrades it. With many stale routes 
within the DSR’s routing cache (that may propagate to other 
nodes within the network), the result is more losses in the 
network. Thus, TCP triggers its congestion control algorithm 
more frequently with the increase of the mobility rate. Let us 
now consider the particular case of TCP Vegas. Indeed, even 
that TCP Vegas consumes less energy per received bit when 
used with DSR than with AODV case. Simulations’ results 
show that TCP Vegas has sent and received less data It is 
worth to note that, at high mobility rate, the frequent changes 
in network topology (due to nodes mobility) leads to unstable 
RTT values between the communicating nodes. TCP Vegas 
depends on measured RTT values in the network to adjust its 
RTO timer and its transmission rate. Thus, might provoke 
mistaken RTO timer or transmission rate calculations. If the 
calculated RTO timer value is much less than the actual RTT 
between the communicating nodes, that means sent packets 
will be resent without need (unnecessary retransmissions). On 
the other hand, if it is much longer than the actual RTT 
between the communicating nodes, we would wait for 
unnecessary long time to perceive that there is a lost packet. 
We have to mention that TCP Vegas still contains Reno’s 
coarse-grained timeout code in case its proper mechanisms fail 
to recognize the loss. The low goodput of TCP Vegas, shown 
in Figure 10, confirms that its transmission rate window was 

not well dimensioned in this case, and we think that the 
estimated RTO value is much less than the actual RTT in most 
of the cases (as explained above). Regarding TCP average 
connection time, Figure 9 depicts that the average connection 
time of TCP sessions differs with the TCP variant. 
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Figure 8. Energy consumed per received bit at 30m/s speed. 
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Figure 9. TCP Average connection time at 30m/s speed. 
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Figure 10. TCP Average Goodput at 30m/s speed. 

For example, with some variants (i.e. TCP Tahoe, TCP Reno, 
TCP New-Reno, and TCP SACK), both reactive protocols lead 
to less average connection time than proactive ones. On the 
other hand, Figure 10 illustrates that these variants have better 
goodput at high mobility rate than at low mobility rates. This 
can be viewed as an interesting result. Actually, if the 
communicating nodes are moving in such a way that there is 
always a direct communication path between them; this would 
improve the bandwidth utilization over TCP connection. 



Consequently, leads to higher goodput over the connection. We 
must mention here, that a similar result was found by the 
authors of [8]. In [8] the authors studied TCP Reno 
performance over a mobile ad hoc network using DSR as 
routing protocol. From our observations, we might generalize 
this result for almost all TCP variants with different ad hoc 
routing protocols. From Figures 8, 9 and 10, we conclude that 
both proactive protocols (DSDV and OLSR) have certain 
stability within the network (in terms of energy consumption 
per received bit and average goodput) over the reactive 
protocols (AODV and DSR). Since the control traffic of both 
proactive protocols is continuous and periodic, it keeps the 
network links more stable, where reactive protocols, with 
bursty flooding for route discoveries and repairs, may cause 
numerous collisions on network links. 

5. CONCLUSION AND FUTURE WORK 
It was proved that TCP performance is highly influenced by 
the dynamic nature of mobile ad hoc networks, due to nodes 
mobility. Also, the choice of ad hoc routing protocol to be 
implemented within the network affects TCP behavior within 
this network. Indeed, on the one hand, the overhead of control 
messages caused by the routing protocol might lead to 
network congestion. Thus, enforces TCP to trigger its 
congestion control algorithm. On the other hand, the route 
recovery approach used by a particular ad hoc routing protocol 
can either have a good or a side effect on TCP behavior. 
Hence, if the route recovery time needed by the routing 
protocol to re-establish a broken link is shorter than RTO 
timer of TCP, TCP will not experience packet loss. Otherwise, 
TCP sender recognizes the packet loss through RTO timer. 
This latter will lead TCP to react inadequately to the packet 
loss by triggering its congestion control algorithm.  
Regarding mobility of nodes at mobile ad hoc networks, it was 
interesting to find that nodes’ mobility is not always a 
degradation factor of TCP performance. Sometimes, mobility 
might help ad hoc routing protocols to re-establish broken 
links faster. This prevents TCP sender’s congestion control 
algorithm to start. The importance of choosing the right 
mobility rate still needs some research. As a general result, we 
found that DSDV could be the best choice to be implemented 
when using TCP within mobile ad hoc networks. Indeed, it 
proved to be the best performing routing protocol with all TCP 
variants within mobile ad hoc environment. DSDV, as 
proactive and distance vector routing protocol, includes all 
available routes towards any destination in the network in its 
routing table. In the presented work, we studied the behavior 
of TCP variants in mobile ad hoc networks by varying the ad 
hoc routing protocol and nodes’ mobility rate. In the above 
simulations, we were not able to measure accurately the idle 
energy of TCP variants. NS-2 does not apply the idle energy 
consumption of TCP. In order to find the total energy 
consumption of each TCP variant (including both idle energy 
and communication energy), we intend in our future work to 
study the idle energy consumed by each TCP variant by the 
means of real test-bed experiments. 

REFERENCES 
[1] V. Ramarathinam, M. A. Labrador, «Performance Analysis of TCP over 

Static Wireless ad hoc networks», In ISCA 15th International 
Conference on Parallel and Distributed Computing Systems, PDCS’02, 
Sep. 2002. 

[2] V. Tsaoussidis, A. Lahanas and C. Zhang, «The Wave and Probe 
Communication mechanisms», The Journal of Supercomputing Kluwer 
Academic Publishers, Vol. 20, No 2, Sep. 2001. 

[3] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci, « A 
Performance Study of TCP variants in terms of Energy Consumption 
and Average Goodput within a Static Ad Hoc Environment », To appear 
in the 2nd ACM International Wireless Communications and Mobile 
Computing Conference, IWCMC’06,Jul. 2006. 

[4] J. Liu, S. Singh, «ATCP: TCP for Mobile Ad Hoc Networks», IEEE 
Journal on Selected Areas in Communications, Vol. 10, No 7, Jul. 2001. 

[5] M. Zorzi and R. Rao, «Energy Efficiency of TCP in a local wireless 
environment», Mobile Networks and Applications, Vol. 6, No. 3, July 
2001. 

[6] S. Agrawal and S. Singh, «An Experimental Study of TCP’s Energy 
Consumption over a Wireless Link», 4th European Personal Mobile 
Communications Conference, EPMCC’02, Feb. 2002. 

[7] H. Singh and S. Singh, «Energy consumption of TCP Reno, New Reno, 
and SACK in multi-hop wireless networks», In ACM SIGMETRICS’02, 
Jun. 2002. 

[8] [HOL 99] G. Holland and N. Vaidya, «Analysis of TCP performance 
over mobile ad hoc networks», in 5th annual ACM/IEEE International 
Conference on Mobile Computing and Networking, ICMCN’99, Aug. 
1999. 

[9]  H. Singh, S. Saxena, and S. Singh, «Energy Consumption of TCP in Ad 
Hoc Networks», J. Wireless Networks, Vol. 10, No. 5, Sep. 2004. 

[10] M. Allman, V. Paxon, W. Stevens, «TCP Congestion Control», RFC 
2581, IETF, Apr. 1999. 

[11] V. Jacobson., «Congestion avoidance and control», In ACM 
SIGCOMM’88 symposium on communications architectures and 
protocols, Vol. 18, No. 4, Aug. 1988.             

[12] V. Jacobson., «Modified TCP Congestion avoidance Algorithm», 
end2end-interest mailing list, 30 Apr. 1990. 
(ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail). 

[13] K. Fall and S. Floyd., «Simulation-based comparison of Tahoe, Reno, 
and sack TCP», in ACM Computer Communications Review, Jul. 1996. 

[14] J. Hoe., «Start-up Dynamics of TCP’s Congestion Control and 
Avoidance Scheme », Master’s thesis, MIT, Jun.1995. 

[15] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, «TCP 
Westwood: Bandwidth Estimation for enhanced transport over wireless 
links», 7th annual International Conference on Mobile Computing and 
Networking, ICMCN’01, Jul. 2001. 

[16] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson «TCP 
Vegas: New Techniques for Congestion Detection and Avoidance», 
ACM SIGCOMM’94, Aug. 1994. 

[17] C. E. Perkins and P. Bhagwat, «Highly Dynamic Destination-Sequenced 
Distance-Vector Routing (DSDV) for Mobile Computers», ACM 
Computer Communications Review, Oct.1994. 

[18] L. R. Ford Jr. and D. R. Fulkerson, «Flows in Networks», Princeton 
Univ. Press, 1962. 

[19] T. Clausen, «Comparative Study of Routing Protocols for Mobile Ad-
Hoc NETworks», Research Report, RR-5135, INRIA, Mar. 2004. 

[20] C. E. Perkins and E. M. Royer, «Ad-hoc On-Demand Distance Vector 
Routing», In 2nd IEEE Wksp. Mobile Comp. Sys. And Apps, 
WMCSA’99, Feb. 1999. 

[21] D. B. Johnson and D. A. Maltz  «Dynamic Source Routing in Ad Hoc 
Wireless Networks». In Mobile Computing, T. Imielinski and H. Korth, 
editors, Chapter 5, pp. 153-181, Kluwer Academic Publishers, 1996. 

[22] J. Broch, D. Johnson, and D. Maltz, « The dynamic source routing 
protocol for mobile ad hoc networks», Internet draft, IETF Mobile Ad 
Hoc Networking Working Group, Dec. 1998. 

[23] A. Aaron and J. Weng, «Performance Comparison of Ad-hoc Routing 
Protocols for Networks with Node Energy Constraints», EE 360 Class 
Project, Stanford University, Spring 2000-2001. 

[24] Network Simulator-NS-2. Available at www.isi.edu/nsnam/ns/ 
[25] V. Tsaoussidis et al., «Energy/Throughput Tradeoffs of TCP Error 

Control Strategies», 5th IEEE Symp. Computers and Communications, 
ISCC’00, Jul. 2000. 


