
Party: Pastry-Like Multi-hop Routing Protocol for
Wireless Self-Organizing Networks

 Ghazi AL SUKKAR Hossam AFIFI Sidi-Mohammed Senouci
 Institut National des Télécommunications Institut National des Télécommunications France Telecom R&D
 Evry-France Evry-France Lannion-France
 ghazi.al_sukkar@int-evry.fr hossam.afifi@int-evry.fr sidimohammed.senouci@francetelecom.com

Abstract:
In this paper we propose Party, a new routing protocol for
wireless Self-Organizing Networks. This protocol is intended
to be applied in environments with large number of nodes
where the scalability of the routing protocols plays an
important issue; it is well known that the current ad hoc
routing protocols do not scale to work efficiently in networks
of more than a few hundred nodes. In Party, nodes build a
network infrastructure which allocates each node a unique
temporary address according to its current relative location,
our routing is also unique and only depends on the current
node’s neighborhood, where in order to implement the
routing table, each node needs only to exchange local
information with its direct neighbors.

Keywords: Multi-hop Routing, Distributed Hash tables, Self
Organizing Networks, Ad Hoc networks, Mesh Networks,
Peer to Peer Communication, Dynamic Address Allocation,
Location Service.

I. Introduction:

Wireless Self-Organizing Networks (SONs) are expected to
play an important role in future communications, where they
will find wide application scenarios in daily life events.
Large-scale events such as disaster relief or rescue efforts are
highly dependent on effective communication capabilities.
Such efforts could benefit tremendously from the use of self-
organizing networks to improve the communications and
monitoring capabilities available. Other interesting candidate
scenarios are community networks in dense residential areas,
large scale, long-range networks in developing regions, and
others, where no central administrator exists, or where
administration would prove to be too costly. Already, non-
military technologies and applications seem to point towards
future networks such as: Ad hoc networks, Mesh Networks,
and Sensor Networks. All of these applications will place
increased scalability demands on Self-Organizing Networks.
Scalability is a critical requirement if we want these
networking technologies to reach their full potential.
Such self-organizing networks are supposed to be
unsupported by an underlying IP infrastructure and
independent of the IP-like hierarchical addressing. The main
reason is the need for frequent network addressing updates
caused by node mobility, this introduces new networking
requirements, and we may need novel network architecture.
Here, we focus on the network layer of such a future
architecture.
As mentioned in [1], the new network layer should be
designed to a) minimize the need for manual configuration, b)
avoid centralized solutions and node specialization in favor of
distributed and peer-to-peer solutions, and c) localize control
traffic overhead.

One of the most important components of the network layer is
the routing protocol, the current ad hoc routing protocols and
architectures work well only up to a few hundred nodes. Most
of the current research in wireless SONs routing protocols
focus more on performance and power consumption related
issues in relatively small networks, and less on scalability.
The main reason behind the lack of scalability is that these
protocols rely on flat and static addressing. With scalability as
a partial goal, some efforts have been made in the direction of
hierarchical routing and clustering [2] [3] [4]. These
approaches are promising, but they do not seem to be actively
pursued. Moreover it appears to us as if these protocols would
work well in scenarios with group mobility [5], which is also
a common assumption among cluster based routing protocols.
In this paper, we present Party, a new network layer in which
the integrated routing protocol is very simple and depends
only on node’s neighbors. Party is a distributed system
without any centralized control, in which all nodes have
identical responsibilities. Each node has its own universal
identifier (we can use as an identifier, the node’s IP address or
its MAC address1) and is assigned a temporary address
according to its relative location in the network, thus the
address in this protocol is dynamically changed, with
dynamic addressing, nodes change addresses as they move, so
that their addresses have a topological meaning.
In order to map the node identifier to its current temporary
address, in Party each node of the network may play the role
of a home agent (we called it here the rendez-vous node),
which is similar, in some concepts, to the Mobile IP [6]
architecture. Nevertheless, in our approach, the home agent
functionality is completely distributed and can be executed by
any node in the network. Furthermore, the routing process is
assured even when the home agent moves or fails and routing
information is completely distributed throughout the network.
Routing in Party resembles to some degree the routing
algorithm in Pastry protocol [7].
We have to mention here that Party is not an overlay network
protocol, where nodes communicate in an application level
fashion, like Pastry [7], CAN [8], Chord [9], and Tapestry
[10]. Instead, Party operates at the network level and is
completely independent of a global connectivity ensured by a
network-level routing protocol like IP. Party creates a
topology which is a virtual network representation, where
nodes are identified by their neighborhood in the physical
network.
The rest of this paper is organized as follows. In section II we
describe the related work; Party basic operation is discussed
in section III. In section IV we describe the join procedure,

1 We currently use IP addresses as identifiers. Thus, the transport and
application layers do not need to change, and the temporary address is only
seen at the network layer.

section V describes the routing procedure, address registration
procedure is described in section VI, node lookup procedure
is explained in section VII, node mobility and address
reassignment are treated in section IIIV, Performance analysis
is reported in section IX. Finally we conclude with section X.

II. Related Work:

In the recently years several routing protocols have been
proposed for wireless SONs especially for Ad hoc networks,
most of them are IP-based [11] [12] [13], where addresses are
static and used to identify the nodes. Since the topology in
such networks is dynamic (caused by the mobility of nodes),
and the architecture is infrastructure-less, the design of a
routing protocol for these networks has two choices: 1) either
keep routing entries for every node in the network, or 2)
resort to flooding route requests throughout the network upon
connection setup. Neither of these alternatives scales well as
the network size gets larger.
In order to achieve scalability some protocols were proposed.
In the Zone Routing Protocol (ZRP) [14] and Fisheye State
Routing (FSR) [15], nodes are treated differently depending
on their distance from the destination. In FSR, link updates
are propagated more slowly the further away they travel from
their origin, with the motivation that changes far away are
unlikely to affect local routing decisions. ZRP is a hybrid
reactive and proactive protocol, where the network topology
is divided in multiple zones.
In multilevel-clustering approaches such as Landmark [16],
LANMAR [17], L+ [18], MMWN [2] and Hierarchical State
Routing (HSR) [19], certain nodes are elected as cluster heads
(also called Landmarks). These cluster heads in turn select
higher level cluster heads, up to some desired level. A node’s
address is defined as a sequence of cluster head identifiers,
one per level, allowing the size of routing tables to be
logarithmic in the size of the network, but easily resulting in
long hierarchical addresses. In HSR, for example, the
hierarchical address is a sequence of MAC addresses, each of
which is 6 bytes long.
A problem with having explicit cluster heads is that routing
through cluster heads creates traffic bottlenecks. In landmark,
LANMAR and L+, this is partially solved by allowing nearby
nodes route packets instead of the cluster head, if they know a
route to the destination. All of the above schemes have
explicit cluster heads, and all addresses are therefore relative
to these, and are likely to have to change if a cluster head
moves away. This reliance on cluster head nodes makes the
above schemes best suited to scenarios involving group
mobility, such as troop movements.
Another way to achieve scalability is to use geographic
location information to assist in the routing, in these protocols
[20] [21] it is assumed that each node knows its location
coordinates using some technologies (e.g. GPS), although
they scale well in large network size, location information is
not always available. Taking this in consideration a number of
new routing protocols where invented that try to estimate
node coordinates in a relative way without the assistant of any
positioning system, examples of these protocols NoGeo [22]
and GEM [23], where NoGeo embeds the network graph in a
virtual 2-dimensional coordinate space, and uses geographical
forwarding techniques for routing. The approach is
interesting, in that it achieves the O(1) complexity of
geographical routing, but does not require actual geographical

coordinates. However, the scheme will only work on certain
types of graphs (typically unit-disk like graphs).
In Area Routing [24], nodes that are close to each other in the
network topology have similar addresses, without any explicit
nodes hierarchy. PeerNet1 [25], Tribe [26], and our proposed
protocol Party, exploit this idea, i.e. nodes that are neighbors
in the topology2 take addresses that are close to each other.
PeerNet is a network layer where node’s address reflects its
location in the network and are registered with the respective
node global identifier in the distributed node lookup service,
addresses are organized as leaves of a binary tree (called
address tree), PeerNet routing is a recursive procedure
descending through the address tree, where routing
disseminates information about the global state of the network
and nodes maintain routing table that has logl N= entries

(where N is the number of nodes in the network).
In Tribe, nodes are assigned a part of a logical region and a
relative address, the relative address of the node also reflects
its physical location in the network, Tribe routing depends on
the assigned regions, in Tribe the number of entries in the
node’s routing table is O(k) where k is the number of
immediate neighbors of that node.
Our protocol, Party, resembles PeerNet in the way of address
allocation and build routing tables that have the same number
of entries as in Tribe, where a small amount of information is
suffices to implement routing table, (in contrary to PeerNet3
where the routing information pass through the whole
network). Here each node stores information about itself and
its immediate neighbors. Routing is performed in a hop by
hop basis, during the routing procedure, each node forward
the message to its immediate neighbor which gets the
message as close as possible to the destination in a way that
resemble Pastry forwarding procedure.

III. Party Basic Operation:

Party is a completely decentralized and self-organized system.
In Party (like in [25] and [26]) each nodes has a globally
know and unique identifier4 and dynamically assigned a
unique address which changes with node movement to reflect
node’s location in the network, this address is used to
simplify routing in the network. Since the address of the node
changes with node movement, we need a lookup service
which will provide the address of a given node identifier.
To join the network, a node establishes a physical connection
to at least one node already in the network and requests an
address. The neighbor node(s) answer(s) with an address. The
joining node then “registers” its identifier together with the
address in the distributed node lookup service. As a node
moves, it requests and receives new addresses from its new
neighbors. Each time the address change, the node updates its
entry in the lookup service, each node in the network share in
the lookup service, where it can store the mapping entries of
other nodes in the network in a way similar to the
functionality of home agent in mobile IP [6].
The sender node only needs to know the identifier of the
receiver. Before sending its first packet to some destination,

1 Which is now called DART protocol.
2 In wireless SONs, nodes that are neighbors in the network topology are also
neighbors in the physical network.
3 PeerNet uses a modified version of the distance vector routing algorithm to
implement the routing tables.
4 This identifier remains the same and reliably identifies the node.

the sender looks up the current address of the destination node
using the lookup service. The routing is done in a way similar
to the one done in Pastry [7] one hop at a time, where each
node forwards the message to its immediate neighbor which
gets the message as close as possible to the destination. If the
destination cannot be reached, the lookup table is consulted
along the way to find the new address of the destination.

A. Assumptions and Definitions:

We make the following assumptions. First, each node in the
network has one unique identifier, call it ID; the ID of the
node remains the same during the network lifetime, reliably
identifying the node despite its movements and corresponding
geographical location changes. Second this ID is supposed to
be known by any other node and is network-level
independent. Third, an integrated hash-table-like mapping
scheme maps identifiers into rendez-vous node address (RA),
we assume the use of a Consistent Hashing technique [27] to
balance, with high probability, the load among nodes; this
hash function h(.) is known and common to all nodes. This
rendez-vous node is the one responsible for storing the
current address of the node with identifier ID.
We illustrate this in the following example, let A be a node in
the network with identifier IDA, assume that the temporary
address of A is RA. The address of the rendez-vous node RR

A
of A is given by hashing IDA, i.e. RR

A= h(IDA), which is node
B, then node B store mapping of node A.

B. Address Allocation:

Party enables nodes to allocate addresses in a local way i.e.
without the need to contact faraway nodes in the network, at
any given time; each node manages a range of addresses
including its own address. Node addresses are dynamically
assigned depending on the node’s current position in the
network. More specifically, the addresses are organized as a
tree. We call this the address tree, see Fig. 1.
Let us assume that addresses are k digits decimal1 numbers,
ak-1, . . . , a0, the first node exist in the network take the all
zeroes address 00. . .0, call it the root node, as nodes arrive2
in the neighborhood of this node (i.e. they are in the
transmission range of it), they contact this node to obtain an
address (call these nodes level 1 nodes). The root node
control the first digit (leftmost digit) of the address, where it
give the first arriving node address 100…0, the second
arriving node 200…0 and so on up to 900…0. These first
level nodes control the second digit (from left) in the address,
so when nodes connect to any of these nodes and ask for
address, they fix the first digit as their address and change the
second digit according to node arriving sequence. For
example if a node arrive and it is in the neighborhood of the
node with address 100…0 and ask this node for an address,
then node 100…0 will give it the address 110…0, the second
node ask 100…0 for an address will take 120…0 as an
address and so on (we call node 100…0 parent of nodes
110…0, 120…0,…,190…0 and thus they are its children).
These second level nodes take control of the third digit and so
on. Fig. 1 show an example of an address tree with three
digits addresses, for k = 3 digits, the entire address space can
be represented by xxx, where x Є {0, 1,…, 9}, nodes in level l

1 We can use hexadecimal numbers or any base numbers.
2 We assume that nodes arrive in the network one by one.

subtree are the children of the node in level l-1. We call the
last level nodes in the tree leaves.

Fig. 1. Address tree with three digits decimal address space.

These leaves do not take control of addresses since address
space reaches its limit.
Address tree illustrates how addresses are allocated in Party,
it does not represent the actual network topology although
address of a node depends on its current position in the
network. Fig. 2 shows an example of a network topology with
Party protocol in use.

IV. The Join Procedure:

When a new node i arrives in the network, it receives an
address Ri (call it temporary address) which will be used for
routing. A new node in the network receives the temporary
address from one of its neighbors (we call this neighbor the
parent neighbor Pi). We assume the existence of some
bootstrap mechanism which allows new nodes to identify
their neighbors in the network.
This mechanism results in a list containing information about
all neighbors. Let { }, ,...,1 2N n n ni k= be the set of k nodes in the

neighborhood of node i (in its transmission region). The
neighborhood list Li of node i is defined as

, , , , , , . . . , , ,
1 2

1 1 2 2
L n R C n R C n R C

i n n n n k n n
k k

      =           
       

where { }
1 2
, , ...,

j mn c c cC R R R= is the children list managed

by node nj, j in N∀ ∈ .

The neighborhood list is used to determine which existing
node in the neighborhood will give a temporary address to the
arriving node. Several factors must be taken into account.
Party applies the following criteria to assign one temporary
address to a new node. It selects, among a set of candidate
neighbors, the node which will be the parent neighbor of the
arriving node. This node will be the one with the least level
i.e. the nearer to the root. If two or more nodes have the same
level then it chooses the node with the least number of
children, if a gain two or more nodes satisfy this condition
then it will choose the one with the least address.
 After the new arriving node chooses the parent neighbor it
asks that parent for a temporary address which will be
assigned according to our address allocation algorithm, we
said that an association relationship established between the
two nodes. In Fig. 2 this association relationship is
represented by continuous thick lines, where the dotted thin
lines represent the neighborhood relationship.

V. The Routing Procedure:

Address allocation algorithm in Party simplifies the routing
procedure. Routing is performed in a hop by hop basis.

Having obtained its temporary address, the new node i also
learns the temporary addresses of its immediate neighbors.
This neighborhood information will compose its routing table.
In Party, a node routes a message by simply forwarding to the
neighbor whose address is the closest to the searched
temporary address of the destination until the messages
reaches the destination. This forwarding procedure resembles
the forwarding procedure in Pastry [7]; where the message is
forwarded to a node from the routing table that has a
temporary address with longer shared prefix with the
temporary address of the destination.

0

1

3

2
5

8

6

4

7

000

100

110

200

111120

210

220

300

9
112

10
400

11
310

13

12
211

221

14
311

15320

16321

To 111

To 311
Fig. 2. An example of network topology with 17 nodes and three digits

address space. Numbers in the circles are nodes identifiers and at the same
represent the sequence of nodes arrival at the network; numbers beside the

circles are nodes addresses.

If the node can not find in its routing table such a node that
have a longer shared prefix matching, it simply forward the
message to its parent an so on until the message reach its
destination.
Fig. 2 shows an example of how the routing algorithm works,
here node 7 with R7 = 220 want to sent for the destination 14
with R14 = 311. Node 7 find it is routing table that node 16
has a temporary address that matches the destination
temporary address in the first digit, so it forwards the message
to this neighbor, in its turn node 16 forwards this message to
node 15 which is its parent neighbor since it does not have in
it routing table any node that has a longer prefix matching
with the destination node’s temporary address. Node 15
forward the message to node 11 which has a temporary
address that matches the destination’s temporary address in
two digits. Finally, this node forwards the message to node 14
which is the destination node.
Also Fig. 2, illustrates another routing example, where the
source is node 7 and the destination is node 4. As you can
note from this example, the message forwarded back to the
root node 0 which in its tern forward it to the destination.
The arrival of a new node affects only a limited number of
existing nodes (nodes that are in its direct transmission
region). The number of neighbors and, consequently, the
signaling overhead, depend only on the node’s transmission
range and are independent of the total number of nodes in the
system. Furthermore, a small amount of information suffices
to implement Party routing. Each node only stores
information about itself and about its neighbors.

VI. Address Registration Procedure:

After joining the network, the new node i has a temporary
address Ri. The next step is to identify the node which will be
responsible for storing its mapping information, i.e. the
rendez-vous node of node i. The operation of registering the

temporary address in the corresponding rendez-vous node is
mandatory for every arriving node.
By using any well-known functions like SHA-1 [28], each
node hashes its identifier, ID, and obtains an m-bit number.
This number is then translated using certain function into a
temporary address Rr, this address is used to find the rendez-
vous node of node i as the following. Node i forwards a
registration request message using Rr as a destination
address, by applying the routing procedure as in section V.
This request will be forwarded until it reaches the node
having temporary address that has the longest prefix matching
with Rr.
This node is the one responsible for storing the mapping
information of node i; (ID i, Ri, Ni, Pi). This mapping
information will be refreshed periodically, as long as node i
maintain its current position in the network. Also every node
in the path to the rendez-vous node will store this mapping in
its cache for a certain period of time. This cached mapping is
used to avoid the need to contact faraway nodes in the
network for the mapping information of a node located in the
vicinity of the source node. This will assure that the signaling
overhead will be localized as possible.

VII. Node lookup Procedure:

Since the ID of a node is not its address, Party provides a
distributed node lookup service for looking up a temporary
address given an identifier. Intuitively, each identifier is
mapped through some function to a single address and the
node that currently controls that address is required to store
the mapping and responding to requests for this mapping.
The source node apply the globally know hash function on the
destination node IDd, so it well get a temporary address Rd ,
this temporary address is the one used to find the rendez-vous
node of the destination.
To find the rendez-vous node, the source forwards a mapping
request message using Rd as a destination address, applying
the same routing procedure in section V, each time the
message reaches a new node, this node will check its cache
for a fresh mapping information, if it find this mapping, then
it will respond with mapping reply message to the source
node, otherwise it forwards the request to its neighbor whose
address is the closest to the searched temporary address Rd. If
no such cached information available in the path, then the
request will be forwarded until it reaches the node with the
longest prefix matching with Rd, this node is the rendez-vous
node of the destination. This rendez-vous node will respond
with the mapping information for the desired destination
node. In the backward path from the rendez-vous node to the
source node, this mapping information will be cached for a
certain time in each node on the path. This cached
information is used in later mapping requests by other nodes
for the same mapping information.

VIII. Mobility and Address Reassignment:

Since we are considering here wireless SONs, Party has to
deal with nodes that voluntarily join or leave the network
caused by node mobility. With a node i departure, the system
must guarantee the stability of the routing protocol. We
consider that before leaving its location, a node explicitly
hands over its temporary address Ri, its neighborhood set Ni,

neighborhood list Li, its children list Ci, and the associated
mapping information database to its parent neighbor1.
In this situation Party has to deal with one of the following
cases:
Case 1: The leaving node is a leaf node, Fig. 3, shows an
example, where node 9 leaves the network (or changes its
position), in this case, the node mobility will cause no impact
on the organization of the topology, the only process that will
take place is the handover of the mapping information
database, to the parent Pi, and the temporary address of the
leaving node will be available again for its parent to be
assigned to another node.

0

1

3

2
5

8

6

4

7

000

100

110

200

111 120

210

220

300

9
112

10
400

11
310

13

12
211

221

14
311

15 320

16 321

Fig. 3. Leaf node 9, and node 1 leaves (or changes its position).

Case 2: The leaving node is not a leaf node; it could be any
node in any level of the address tree. The system must
guarantee that after a node departure every message addressed
to one of its children will be correctly delivered, and also
messages directed through their parent will be correctly
delivered. The parent neighbor Pi of the leaving node i must
then establish alternative paths to the nodes that have lost
their association relationship. In Fig. 3 node 1 leaves the
network, the parent neighbor of it, is node 0, and it has two
children, node 2 and 5.
Based on the received neighborhood list Li of the depart node
i, its parent neighbor Pi will face one of the following:

� The children of the leaved node i are also neighbors
of the parent node Pi of i i.e.

ii PC N⊂ , in this case the parent

neighbor establishes an association relationship with these
node, telling them that it now play the role of their previous
parent i and no other operation will be required. Thus any
messaged directed to (through) or from these children will be
processed by the parent neighbor of the previously departed
node. We call this a smooth reassignment.

� All or some children of the leaved node i are note
neighbors of the parent node Pi of i i.e.

ii PC N⊄ , in this case,

the parent neighbor Pi try to find the set S of the children
nodes that are also neighbors to it self, i.e.

ii PS C N= ∩ ,

if it is not empty S φ≠ , then the parent neighbor establishes

an association relationship with these node as in the previous
case. For establishing an association relationship with the rest
of children

if C S= − that are note neighbors of Pi, the parent

neighbor performs a limited flooding by sending a
reassignment message directed to each node in set f. Upon

1 We assume the existence of a mechanism that allows a node to determine
when it is leaving its location.

reception of the reassignment replay messages2, which
convey the temporary addresses of every node traversed and,
consequently, the number of hops in the path to each node in
f, the parent neighbor decides which paths (call it virtual
paths) are appropriate for establishing the association
relationship with the nodes in f (it takes the paths with the
least number of hops), see Fig. 4.
The parent neighbor then sends an alternative association
message to each node in the path to each child in f, informing
it of this alternative path. Thus each node in the network will
include also in its routing table these virtual paths; it will
contain entries for the children temporary address and the
next hop node to reach it.
Taking this case in consideration, each time that a new node
arrives in a location that has been previously occupied by
another node, the parent neighbor verifies if the new node is
appropriate to receive the previous handed over temporary
address and the associated mapping information database.

3

2
5

8

6

4

7

000

110

200

111 120

210

220

300

9
112

10
400

11
310

13

12
211

221

14
311

15 320

16 321

0

Fig. 4. This figure shows the established virtual paths after node 1 leaved the

network.
The parent neighbor compares the neighborhood set sent by
the previous mobile node, before it’s moving, and by the new
arrived node. If the new node is also a neighbor of all the
children of the previous node i.e. if

i NEWC N⊂ , the parent

neighbor assigns the temporary address and the mapping
information database of the previous leaved node to the new
node, and sends release alternative association message to
each node in the virtual paths. However, if the new node can
not satisfy this condition a new temporary address will be
attributed to it, according to the described Party join
procedure.

IX. Performance Analysis:

As we said before, Party is a scalable routing protocol; the
scalability of this protocol comes from that it is a completely
decentralized and self-organized system.
The scalability in Party could be noticed from the following:

� Size of the routing table, in Party each node has a
routing table of size O(k), where k is the number of immediate
neighbors of the node, contrarily to PeerNet [25] where nodes
maintain routing table that has logl N= entries, where N is

the number of nodes in the network.
� Signaling traffic needed to implement and maintain

the routing table, in Party routing table entries are the
immediate neighbors and the only signaling traffic needed is
the hello signals between neighbors that used to inform that
the node is still alive and still in its position. In PeerNet the
information needed to implement and maintain the routing

2 There is a probability that some of these node will note be reached, in this
case we said that the network suffer from topology separation. In this paper
we are not going to treat this situation.

table have to pass the whole network, since PeerNet uses a
modified version of distance vector routing algorithm.
Comparing our protocol with Tribe [26] we notice that the
address allocation in ours is more easy and consequently the
routing algorithm. When node moves from its location, the
process of reassignment is also simpler than the one in Tribe.
The arrival of a new node and node movement affects only a
limited number of existing nodes (nodes that are in its direct
transmission region) i.e. its immediate neighbors. Thus the
signaling overhead resulting from this action will be small
and local.
The cost of connection in Party is O(1), since the only thing
that a source needs to establish a connection with a
destination is that’s destination temporary address. This cost
is the same we found in geographical routing protocols where
nodes need to know its location coordinate using some
technologies (e.g. GPS), which is not always available.
The cost of node lookup is also O(1), since the source needs
only to route the lookup message to the temporary address
resulting from applying the destination’s identity to the
globally known hash function. The need to contact a faraway
rendez-vous node in order to lookup a node located just near
the source is alleviated by the use of cashes.

X. Conclusion:

Party is a network layer designed for wireless self-organizing
networks, it is a decentralized, scalable, and independent of
IP-like addressing limitations. Party proposes an addressing
structure and allocation that ease routing in such networks,
the routing strategy provided by Party is a distributed one,
where the forwarding process is done hop by hop in a way
resemble the forwarding process in Pastry Peer-to Peer
protocol [7]. A tree-like logical topology is created, which
describes the relative location of the nodes according to their
neighborhood in the physical network.
A small amount of information suffices to implement Party
routing, i.e., low signaling overhead is generated (only local
neighborhood communication), Thus the routing table size is
O(k), where k is the number of immediate neighbors of the
node. Moreover, a node movement does not affect Party’s
address tree organization, i.e., it does not require the
assignment of new addresses to other nodes already in the
network.
We believe, however, that Party is an innovative and
promising approach for spontaneous networks with low
dynamics, like wireless mesh networks where routers, once
they have configured themselves, do not move for a long
time.Party support dynamic networks, where during node
mobility, Party keeps the correct execution of the routing
procedure and ensures that the former neighbors of a mobile
node remain reachable through some valid path.
Our future study will include sudden node failures and a
treatment of certain network issues, like network separation,
networks merging. And a study of this protocol performance
through simulation. We are now in the state of implementing
this protocol in NS2.

REFERENCES:

[1] Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurthy,
“Scalable ad hoc routing: The case for dynamic addressing,” in IEEE
InfoCom, 2004.

[2] Ram Ramanathan and Martha Steenstrup, “Hierarchically-organized,
multihop mobile wireless networks for quality-of-service support,”
Mobile Networks and Applications, vol. 3, no. 1, pp. 101–119, 1998.

[3] Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang,
“A wireless hierarchical routing protocol with group mobility,” in
WCNC,1999.

[4] G. Pei, M. Gerla, and X. Hong, “Lanmar: Landmark routing for
large scale wireless ad hoc networks with group mobility,” in ACM
MobiHOC’00, 2000.

[5] X. Hong, M. Gerla, G. Pei, and C. Chiang, “A group mobility model
for ad hoc wireless networks,” 1999.

[6] E. Perkins, Mobile IP: Design Principles and Practices.Addison-
Wesley, 1997.

[7] Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in Proceedings of the
Middleware, 2001.

[8] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott
Shenker. “A Scalable Content-Addressable Network,” In Proceedings
of the ACM SIGCOMM, 2001.

[9] Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
“Chord: A Scalable Peer-topeer Lookup Service for Internet
Applications,” ACM SIGCOMM 2001, San Diego, CA, August 2001.

[10] Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in communications, vol.
22, no. 1, pp. 41–53, January 2004.

[11] Perkins, “Ad hoc on demand distance vector routing,” 1997.
[12] Charles Perkins and Pravin Bhagwat, “Highly dynamic destination

sequenced distance-vector routing (DSDV) for mobile computers,” in
ACM SIGCOMM’94, 1994.

[13] David B Johnson and David A Maltz, “Dynamic source routing in ad
hoc wireless networks,” in Mobile Computing, vol. 353. Kluwer
Academic Publishers, 1996.

[14] Z. Haas, “A new routing protocol for the reconfigurable wireless
networks,” 1997.

[15] Guangyu Pei, Mario Gerla, and Tsu-Wei Chen, “Fisheye state routing:
A routing scheme for ad hoc wireless networks,” in ICC (1), 2000, pp.
70–74.

[16] Paul F. Tsuchiya, “The landmark hierarchy : A new hierarchy for
routing in very large networks,” in SIGCOMM. 1988, ACM.

[17] G. Pei, M. Gerla, and X. Hong, “Lanmar: Landmark routing for
large scale wireless ad hoc networks with group mobility,” in ACM
MobiHOC’00, 2000.

[18] Benjie Chen and Robert Morris, “L+: Scalable landmark routing and
address lookup for multi-hop wireless networks,” 2002.

[19] Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang,
“A wireless hierarchical routing protocol with group mobility,” in
WCNC, 1999.

[20] Y.-B. Ko and N.H. Vaidya, “Location-aided routing (LAR) in mobile
ad hoc networks,” in ACM/IEEE MobiCom, 1998.

[21] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, “A
distance routing effect algorithm for mobility (DREAM),” in
ACM/IEEE MobiCom, 1998.

[22] Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in ACM MobiCom,
2003.

[23] James Newsome and Dawn Song, “Gem: graph embedding for routing
and data-centric storage in sensor networks without geographic
information,” in SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems, New York, NY,
USA, 2003, pp. 76–88, ACM Press.

[24] L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks:
Performance evaluation and optimization,,” Computer Networks, vol. 1,
1977.

[25] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “PeerNet Pushing
Peer- to- Peer down the stack,” Proceedings of International
Workshopon Peer to Peer systems, IPTPS’03, 2003.

[26] Aline C. Viana, Marcelo D. de Amorim, Serge Fdida, and Jos F.
de Rezende, “Indirect routing using distributed location information,”
ACM Mobile Networks Applications, Special Issue on Mobile and
Pervasive Computing, 2003.

[27] D. R. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R.
Panigrahy, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in
Proceedings of ACM Symposium on Theory of Computing, El Paso, TX,
May 1997.

[28] “FIPS 180-1, Secure Hash Standard.” U.S. Department of
commerce/NIST, National Technical Information Service, Springfield,
Apr. 1995.

