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Abstract: 
In this paper we propose Party, a new routing protocol for 
wireless Self-Organizing Networks. This protocol is intended 
to be applied in environments with large number of nodes 
where the scalability of the routing protocols plays an 
important issue; it is well known that the current ad hoc 
routing protocols do not scale to work efficiently in networks 
of more than a few hundred nodes. In Party, nodes build a 
network infrastructure which allocates each node a unique 
temporary address according to its current relative location, 
our routing is also unique and only depends on the current 
node’s neighborhood, where in order to implement the 
routing table, each node needs only to exchange local 
information with its direct neighbors. 
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I. Introduction: 
 

Wireless Self-Organizing Networks (SONs) are expected to 
play an important role in future communications, where they 
will find wide application scenarios in daily life events. 
Large-scale events such as disaster relief or rescue efforts are 
highly dependent on effective communication capabilities. 
Such efforts could benefit tremendously from the use of self-
organizing networks to improve the communications and 
monitoring capabilities available. Other interesting candidate 
scenarios are community networks in dense residential areas, 
large scale, long-range networks in developing regions, and 
others, where no central administrator exists, or where 
administration would prove to be too costly. Already, non-
military technologies and applications seem to point towards 
future networks such as: Ad hoc networks, Mesh Networks, 
and Sensor Networks. All of these applications will place 
increased scalability demands on Self-Organizing Networks. 
Scalability is a critical requirement if we want these 
networking technologies to reach their full potential. 
Such self-organizing networks are supposed to be 
unsupported by an underlying IP infrastructure and 
independent of the IP-like hierarchical addressing. The main 
reason is the need for frequent network addressing updates 
caused by node mobility, this introduces new networking 
requirements, and we may need novel network architecture. 
Here, we focus on the network layer of such a future 
architecture. 
As mentioned in [1], the new network layer should be 
designed to a) minimize the need for manual configuration, b) 
avoid centralized solutions and node specialization in favor of 
distributed and peer-to-peer solutions, and c) localize control 
traffic overhead. 

One of the most important components of the network layer is 
the routing protocol, the current ad hoc routing protocols and 
architectures work well only up to a few hundred nodes. Most 
of the current research in wireless SONs routing protocols 
focus more on performance and power consumption related 
issues in relatively small networks, and less on scalability. 
The main reason behind the lack of scalability is that these 
protocols rely on flat and static addressing. With scalability as 
a partial goal, some efforts have been made in the direction of 
hierarchical routing and clustering [2] [3] [4]. These 
approaches are promising, but they do not seem to be actively 
pursued. Moreover it appears to us as if these protocols would 
work well in scenarios with group mobility [5], which is also 
a common assumption among cluster based routing protocols. 
In this paper, we present Party, a new network layer in which 
the integrated routing protocol is very simple and depends 
only on node’s neighbors. Party is a distributed system 
without any centralized control, in which all nodes have 
identical responsibilities. Each node has its own universal 
identifier (we can use as an identifier, the node’s IP address or 
its MAC address1) and is assigned a temporary address 
according to its relative location in the network, thus the 
address in this protocol is dynamically changed, with 
dynamic addressing, nodes change addresses as they move, so 
that their addresses have a topological meaning. 
In order to map the node identifier to its current temporary 
address, in Party each node of the network may play the role 
of a home agent (we called it here the rendez-vous node), 
which is similar, in some concepts, to the Mobile IP [6] 
architecture. Nevertheless, in our approach, the home agent 
functionality is completely distributed and can be executed by 
any node in the network. Furthermore, the routing process is 
assured even when the home agent moves or fails and routing 
information is completely distributed throughout the network. 
Routing in Party resembles to some degree the routing 
algorithm in Pastry protocol [7]. 
We have to mention here that Party is not an overlay network 
protocol, where nodes communicate in an application level 
fashion, like Pastry [7], CAN [8], Chord [9], and Tapestry 
[10]. Instead, Party operates at the network level and is 
completely independent of a global connectivity ensured by a 
network-level routing protocol like IP. Party creates a 
topology which is a virtual network representation, where 
nodes are identified by their neighborhood in the physical 
network. 
The rest of this paper is organized as follows. In section II we 
describe the related work; Party basic operation is discussed 
in section III. In section IV we describe the join procedure, 

                                                
1 We currently use IP addresses as identifiers. Thus, the transport and 
application layers do not need to change, and the temporary address is only 
seen at the network layer.  
 



section V describes the routing procedure, address registration 
procedure is described in section VI, node lookup procedure 
is explained in section VII, node mobility and address 
reassignment are treated in section IIIV, Performance analysis 
is reported in section IX. Finally we conclude with section X. 
 

II. Related Work: 
 

In the recently years several routing protocols have been 
proposed for wireless SONs especially for Ad hoc networks, 
most of them are IP-based [11] [12] [13], where addresses are 
static and used to identify the nodes. Since the topology in 
such networks is dynamic (caused by the mobility of nodes), 
and the architecture is infrastructure-less, the design of a 
routing protocol for these networks has two choices:  1) either 
keep routing entries for every node in the network, or 2) 
resort to flooding route requests throughout the network upon 
connection setup. Neither of these alternatives scales well as 
the network size gets larger. 
In order to achieve scalability some protocols were proposed. 
In the Zone Routing Protocol (ZRP) [14] and Fisheye State 
Routing (FSR) [15], nodes are treated differently depending 
on their distance from the destination. In FSR, link updates 
are propagated more slowly the further away they travel from 
their origin, with the motivation that changes far away are 
unlikely to affect local routing decisions. ZRP is a hybrid 
reactive and proactive protocol, where the network topology 
is divided in multiple zones. 
In multilevel-clustering approaches such as Landmark [16], 
LANMAR [17], L+ [18], MMWN [2] and Hierarchical State 
Routing (HSR) [19], certain nodes are elected as cluster heads 
(also called Landmarks). These cluster heads in turn select 
higher level cluster heads, up to some desired level. A node’s 
address is defined as a sequence of cluster head identifiers, 
one per level, allowing the size of routing tables to be 
logarithmic in the size of the network, but easily resulting in 
long hierarchical addresses. In HSR, for example, the 
hierarchical address is a sequence of MAC addresses, each of 
which is 6 bytes long. 
A problem with having explicit cluster heads is that routing 
through cluster heads creates traffic bottlenecks. In landmark, 
LANMAR and L+, this is partially solved by allowing nearby 
nodes route packets instead of the cluster head, if they know a 
route to the destination. All of the above schemes have 
explicit cluster heads, and all addresses are therefore relative 
to these, and are likely to have to change if a cluster head 
moves away. This reliance on cluster head nodes makes the 
above schemes best suited to scenarios involving group 
mobility, such as troop movements. 
Another way to achieve scalability is to use geographic 
location information to assist in the routing, in these protocols 
[20] [21] it is assumed that each node knows its location 
coordinates using some technologies (e.g. GPS), although 
they scale well in large network size, location information is 
not always available. Taking this in consideration a number of 
new routing protocols where invented that try to estimate 
node coordinates in a relative way without the assistant of any 
positioning system, examples of these protocols NoGeo [22] 
and GEM [23], where NoGeo embeds the network graph in a 
virtual 2-dimensional coordinate space, and uses geographical 
forwarding techniques for routing. The approach is 
interesting, in that it achieves the O(1) complexity of 
geographical routing, but does not require actual geographical 

coordinates. However, the scheme will only work on certain 
types of graphs (typically unit-disk like graphs).   
In Area Routing [24], nodes that are close to each other in the 
network topology have similar addresses, without any explicit 
nodes hierarchy. PeerNet1 [25], Tribe [26], and our proposed 
protocol Party, exploit this idea, i.e. nodes that are neighbors 
in the topology2 take addresses that are close to each other. 
PeerNet is a network layer where node’s address reflects its 
location in the network and are registered with the respective 
node global identifier in the distributed node lookup service, 
addresses are organized as leaves of a binary tree (called 
address tree), PeerNet routing is a recursive procedure 
descending through the address tree, where routing 
disseminates information about the global state of the network 
and nodes maintain routing table that has logl N= entries 

(where N is the number of nodes in the network). 
In Tribe, nodes are assigned a part of a logical region and a 
relative address, the relative address of the node also reflects 
its physical location in the network, Tribe routing depends on 
the assigned regions, in Tribe the number of entries in the 
node’s routing table is O(k) where k is the number of 
immediate neighbors of that node.  
Our protocol, Party, resembles PeerNet in the way of address 
allocation and build routing tables that have the same number 
of entries as in Tribe, where a small amount of information is 
suffices to implement routing table, (in contrary to PeerNet3 
where the routing information pass through the whole 
network). Here each node stores information about itself and 
its immediate neighbors. Routing is performed in a hop by 
hop basis, during the routing procedure, each node forward 
the message to its immediate neighbor which gets the 
message as close as possible to the destination in a way that 
resemble Pastry forwarding procedure. 
 

III.  Party Basic Operation: 
 

Party is a completely decentralized and self-organized system. 
In Party (like in [25] and [26]) each nodes has a globally 
know and unique identifier4 and dynamically assigned a 
unique address which changes with node movement to reflect 
node’s location in the network, this address is used to 
simplify routing in the network. Since the address of the node 
changes with node movement, we need a lookup service 
which will provide the address of a given node identifier. 
To join the network, a node establishes a physical connection 
to at least one node already in the network and requests an 
address. The neighbor node(s) answer(s) with an address. The 
joining node then “registers” its identifier together with the 
address in the distributed node lookup service. As a node 
moves, it requests and receives new addresses from its new 
neighbors. Each time the address change, the node updates its 
entry in the lookup service, each node in the network share in 
the lookup service, where it can store the mapping entries of 
other nodes in the network in a way similar to the 
functionality of home agent in mobile IP [6]. 
The sender node only needs to know the identifier of the 
receiver. Before sending its first packet to some destination, 
                                                
1 Which is now called DART protocol. 
2 In wireless SONs, nodes that are neighbors in the network topology are also 
neighbors in the physical network. 
3 PeerNet uses a modified version of the distance vector routing algorithm to 
implement the routing tables. 
4 This identifier remains the same and reliably identifies the node. 



the sender looks up the current address of the destination node 
using the lookup service. The routing is done in a way similar 
to the one done in Pastry [7] one hop at a time, where each 
node forwards the message to its immediate neighbor which 
gets the message as close as possible to the destination. If the 
destination cannot be reached, the lookup table is consulted 
along the way to find the new address of the destination. 
 

A. Assumptions and Definitions: 
 

We make the following assumptions. First, each node in the 
network has one unique identifier, call it ID; the ID of the 
node remains the same during the network lifetime, reliably 
identifying the node despite its movements and corresponding 
geographical location changes. Second this ID is supposed to 
be known by any other node and is network-level 
independent. Third, an integrated hash-table-like mapping 
scheme maps identifiers into rendez-vous node address (RA), 
we assume the use of a Consistent Hashing technique [27] to 
balance, with high probability, the load among nodes; this 
hash function h(.) is known and common to all nodes. This 
rendez-vous node is the one responsible for storing the 
current address of the node with identifier ID. 
We illustrate this in the following example, let A be a node in 
the network with identifier IDA, assume that the temporary 
address of A is RA. The address of the rendez-vous node RR

A 
of A is given by hashing IDA, i.e. RR

A= h(IDA), which is node 
B, then node B store mapping of node A. 
 

B. Address Allocation: 
 

Party enables nodes to allocate addresses in a local way i.e. 
without the need to contact faraway nodes in the network, at 
any given time; each node manages a range of addresses 
including its own address. Node addresses are dynamically 
assigned depending on the node’s current position in the 
network. More specifically, the addresses are organized as a 
tree. We call this the address tree, see Fig. 1.   
Let us assume that addresses are k digits decimal1 numbers, 
ak-1, . . . , a0, the first node exist in the network take the all 
zeroes address 00. . .0, call it the root node, as nodes arrive2 
in the neighborhood of this node (i.e. they are in the 
transmission range of it), they contact this node to obtain an 
address (call these nodes level 1 nodes). The root node 
control the first digit (leftmost digit) of the address, where it 
give the first arriving node address 100…0, the second 
arriving node 200…0 and so on up to 900…0. These first 
level nodes control the second digit (from left) in the address, 
so when nodes connect to any of these nodes and ask for 
address, they fix the first digit as their address and change the 
second digit according to node arriving sequence. For 
example if a node arrive and it is in the neighborhood of the 
node with address 100…0 and ask this node for an address, 
then node 100…0 will give it the address 110…0, the second 
node ask 100…0 for an address will take 120…0 as an 
address and so on (we call node 100…0 parent of nodes 
110…0, 120…0,…,190…0 and thus they are its children). 
These second level nodes take control of the third digit and so 
on. Fig. 1 show an example of an address tree with three 
digits addresses, for k = 3 digits, the entire address space can 
be represented by xxx, where x Є {0, 1,…, 9}, nodes in level l 

                                                
1 We can use hexadecimal numbers or any base numbers. 
2 We assume that nodes arrive in the network one by one. 

subtree are the children of the node in level l-1. We call the 
last level nodes in the tree leaves. 

 

Fig. 1. Address tree with three digits decimal address space. 
 

These leaves do not take control of addresses since address 
space reaches its limit. 
Address tree illustrates how addresses are allocated in Party, 
it does not represent the actual network topology although 
address of a node depends on its current position in the 
network. Fig. 2 shows an example of a network topology with 
Party protocol in use.   
  

IV. The Join Procedure: 
 

When a new node i arrives in the network, it receives an 
address Ri (call it temporary address) which will be used for 
routing. A new node in the network receives the temporary 
address from one of its neighbors (we call this neighbor the 
parent neighbor Pi). We assume the existence of some 
bootstrap mechanism which allows new nodes to identify 
their neighbors in the network. 
This mechanism results in a list containing information about 
all neighbors. Let { }, ,...,1 2N n n ni k= be the set of k nodes in the 

neighborhood of node i (in its transmission region). The 
neighborhood list Li of node i  is defined as  

, , , , , , . . . , , ,
1 2

1 1 2 2
L n R C n R C n R C

i n n n n k n n
k k

      =           
       

 

where { }
1 2
, , ...,

j mn c c cC R R R= is the children list managed 

by node nj, j in N∀ ∈ .  

The neighborhood list is used to determine which existing 
node in the neighborhood will give a temporary address to the 
arriving node. Several factors must be taken into account.  
Party applies the following criteria to assign one temporary 
address to a new node. It selects, among a set of candidate 
neighbors, the node which will be the parent neighbor of the 
arriving node. This node will be the one with the least level 
i.e. the nearer to the root. If two or more nodes have the same 
level then it chooses the node with the least number of 
children, if a gain two or more nodes satisfy this condition 
then it will choose the one with the least address. 
 After the new arriving node chooses the parent neighbor it 
asks that parent for a temporary address which will be 
assigned according to our address allocation algorithm, we 
said that an association relationship established between the 
two nodes. In Fig. 2 this association relationship is 
represented by continuous thick lines, where the dotted thin 
lines represent the neighborhood relationship. 
 

V. The Routing Procedure: 
 

Address allocation algorithm in Party simplifies the routing 
procedure. Routing is performed in a hop by hop basis. 



Having obtained its temporary address, the new node i also 
learns the temporary addresses of its immediate neighbors. 
This neighborhood information will compose its routing table. 
In Party, a node routes a message by simply forwarding to the 
neighbor whose address is the closest to the searched 
temporary address of the destination until the messages 
reaches the destination. This forwarding procedure resembles 
the forwarding procedure in Pastry [7]; where the message is 
forwarded to a node from the routing table that has a 
temporary address with longer shared prefix with the  
temporary address of the destination. 
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If the node can not find in its routing table such a node that 
have a longer shared prefix matching, it simply forward the 
message to its parent an so on until the message reach its 
destination.  
Fig. 2 shows an example of how the routing algorithm works, 
here node 7 with R7 = 220 want to sent for the destination 14 
with R14 = 311. Node 7 find it is routing table that node 16 
has a temporary address that matches the destination 
temporary address in the first digit, so it forwards the message 
to this neighbor, in its turn node 16 forwards this message to 
node 15 which is its parent neighbor since it does not have in 
it routing table any node that has a longer prefix matching 
with the destination node’s temporary address. Node 15 
forward the message to node 11 which has a temporary 
address that matches the destination’s temporary address in 
two digits. Finally, this node forwards the message to node 14 
which is the destination node. 
Also Fig. 2, illustrates another routing example, where the 
source is node 7 and the destination is node 4. As you can 
note from this example, the message forwarded back to the 
root node 0 which in its tern forward it to the destination.  
The arrival of a new node affects only a limited number of 
existing nodes (nodes that are in its direct transmission 
region). The number of neighbors and, consequently, the 
signaling overhead, depend only on the node’s transmission 
range and are independent of the total number of nodes in the 
system. Furthermore, a small amount of information suffices 
to implement Party routing. Each node only stores 
information about itself and about its neighbors. 
 

VI. Address Registration Procedure: 
 

After joining the network, the new node i has a temporary 
address Ri. The next step is to identify the node which will be 
responsible for storing its mapping information, i.e. the 
rendez-vous node of node i. The operation of registering the 

temporary address in the corresponding rendez-vous node is 
mandatory for every arriving node. 
By using any well-known functions like SHA-1 [28], each 
node hashes its identifier, ID, and obtains an m-bit number. 
This number is then translated using certain function into a 
temporary address Rr, this address is used to find the rendez-
vous node of node i as the following. Node i forwards a 
registration request message using Rr as a destination 
address, by applying the routing procedure as in section V. 
This request will be forwarded until it reaches the node 
having temporary address that has the longest prefix matching 
with Rr. 
This node is the one responsible for storing the mapping 
information of node i; (ID i, Ri, Ni, Pi). This mapping 
information will be refreshed periodically, as long as node i 
maintain its current position in the network. Also every node 
in the path to the rendez-vous node will store this mapping in 
its cache for a certain period of time. This cached mapping is 
used to avoid the need to contact faraway nodes in the 
network for the mapping information of a node located in the 
vicinity of the source node. This will assure that the signaling 
overhead will be localized as possible.    
 

VII. Node lookup Procedure: 
 

Since the ID of a node is not its address, Party provides a 
distributed node lookup service for looking up a temporary 
address given an identifier. Intuitively, each identifier is 
mapped through some function to a single address and the 
node that currently controls that address is required to store 
the mapping and responding to requests for this mapping. 
The source node apply the globally know hash function on the 
destination node IDd, so it well get a temporary address Rd , 
this temporary address is the one used to find the rendez-vous 
node of the destination. 
To find the rendez-vous node, the source forwards a mapping 
request message using Rd as a destination address, applying 
the same routing procedure in section V, each time the 
message reaches a new node, this node will check its cache 
for a fresh mapping information, if it find this mapping, then 
it will respond with mapping reply message to the source 
node, otherwise it forwards the request to its neighbor whose 
address is the closest to the searched temporary address Rd. If 
no such cached information available in the path, then the 
request will be forwarded until it reaches the node with the 
longest prefix matching with Rd, this node is the rendez-vous 
node of the destination. This rendez-vous node will respond 
with the mapping information for the desired destination 
node. In the backward path from the rendez-vous node to the 
source node, this mapping information will be cached for a 
certain time in each node on the path. This cached 
information is used in later mapping requests by other nodes 
for the same mapping information.      
 

VIII. Mobility and Address Reassignment: 
 

Since we are considering here wireless SONs, Party has to 
deal with nodes that voluntarily join or leave the network 
caused by node mobility. With a node i departure, the system 
must guarantee the stability of the routing protocol. We 
consider that before leaving its location, a node explicitly 
hands over its temporary address Ri, its neighborhood set Ni, 



neighborhood list Li, its children list Ci, and the associated 
mapping information database to its parent neighbor1. 
In this situation Party has to deal with one of the following 
cases: 
Case 1: The leaving node is a leaf node, Fig. 3, shows an 
example, where node 9 leaves the network (or changes its 
position), in this case, the node mobility will cause no impact 
on the organization of the topology, the only process that will 
take place is the handover of the mapping information 
database, to the parent Pi, and the temporary address of the 
leaving node will be available again for its parent to be 
assigned to another node. 
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Fig. 3. Leaf node 9, and node 1 leaves (or changes its position). 

 

Case 2: The leaving node is not a leaf node; it could be any 
node in any level of the address tree. The system must 
guarantee that after a node departure every message addressed 
to one of its children will be correctly delivered, and also 
messages directed through their parent will be correctly 
delivered. The parent neighbor Pi of the leaving node i must 
then establish alternative paths to the nodes that have lost 
their association relationship. In Fig. 3 node 1 leaves the 
network, the parent neighbor of it, is node 0, and it has two 
children, node 2 and 5. 
Based on the received neighborhood list Li of the depart node 
i, its parent neighbor Pi will face one of the following: 

� The children of the leaved node i are also neighbors 
of the parent node Pi of i i.e.

ii PC N⊂ , in this case the parent 

neighbor establishes an association relationship with these 
node, telling them that it now play the role of their previous 
parent i and no other operation will be required. Thus any 
messaged directed to (through) or from these children will be 
processed by the parent neighbor of the previously departed 
node. We call this a smooth reassignment. 

� All or some children of the leaved node i are note 
neighbors of the parent node Pi of i i.e.

ii PC N⊄ , in this case, 

the parent neighbor Pi try to find the set S of the children 
nodes that are also neighbors to it self, i.e. 

ii PS C N= ∩ , 

if it is not empty S φ≠ , then the parent neighbor establishes 

an association relationship with these node as in the previous 
case. For establishing an association relationship with the rest 
of children 

if C S= − that are note neighbors of Pi, the parent 

neighbor performs a limited flooding by sending a 
reassignment message directed to each node in set f. Upon 

                                                
1 We assume the existence of a mechanism that allows a node to determine 
when it is leaving its location. 
 

reception of the reassignment replay messages2, which 
convey the temporary addresses of every node traversed and, 
consequently, the number of hops in the path to each node in 
f, the parent neighbor decides which paths (call it virtual 
paths) are appropriate for establishing the association 
relationship with the nodes in f (it takes the paths with the 
least number of hops), see Fig. 4. 
The parent neighbor then sends an alternative association 
message to each node in the path to each child in f, informing 
it of this alternative path. Thus each node in the network will 
include also in its routing table these virtual paths; it will 
contain entries for the children temporary address and the 
next hop node to reach it.  
Taking this case in consideration, each time that a new node 
arrives in a location that has been previously occupied by 
another node, the parent neighbor verifies if the new node is 
appropriate to receive the previous handed over temporary 
address and the associated mapping information database. 

 

3 

2 
5 

8 

6 

4 

7 

000 

110 

200 

111 120 

210 

220 

300 

9 
112 

10 
400 

11 
310 

13 

12 
211 

221 

14 
311 

15 320 

16 321 

0 

 
Fig. 4. This figure shows the established virtual paths after node 1 leaved the 

network. 
The parent neighbor compares the neighborhood set sent by 
the previous mobile node, before it’s moving, and by the new 
arrived node. If the new node is also a neighbor of all the 
children of the previous node i.e. if 

i NEWC N⊂  , the parent 

neighbor assigns the temporary address and the mapping 
information database of the previous leaved node to the new 
node, and sends release alternative association message to 
each node in the virtual paths. However, if the new node can 
not satisfy this condition a new temporary address will be 
attributed to it, according to the described Party join 
procedure. 
 

IX. Performance Analysis: 
 

As we said before, Party is a scalable routing protocol; the 
scalability of this protocol comes from that it is a completely 
decentralized and self-organized system. 
The scalability in Party could be noticed from the following: 

� Size of the routing table, in Party each node has a 
routing table of size O(k), where k is the number of immediate 
neighbors of the node, contrarily to PeerNet [25] where nodes 
maintain routing table that has logl N= entries, where N is 

the number of nodes in the network. 
� Signaling traffic needed to implement and maintain 

the routing table, in Party routing table entries are the 
immediate neighbors and the only signaling traffic needed is 
the hello signals between neighbors that used to inform that 
the node is still alive and still in its position. In PeerNet the 
information needed to implement and maintain the routing 

                                                
2 There is a probability that some of these node will note be reached, in this 
case we said that the network suffer from topology separation. In this paper 
we are not going to treat this situation. 



table have to pass the whole network, since PeerNet uses a 
modified version of distance vector routing algorithm. 
Comparing our protocol with Tribe [26] we notice that the 
address allocation in ours is more easy and consequently the 
routing algorithm. When node moves from its location, the 
process of reassignment is also simpler than the one in Tribe. 
The arrival of a new node and node movement affects only a 
limited number of existing nodes (nodes that are in its direct 
transmission region) i.e. its immediate neighbors. Thus the 
signaling overhead resulting from this action will be small 
and local. 
The cost of connection in Party is O(1), since the only thing 
that a source needs to establish a connection with a 
destination is that’s destination temporary address. This cost 
is the same we found in geographical routing protocols where 
nodes need to know its location coordinate using some 
technologies (e.g. GPS), which is not always available. 
The cost of node lookup is also O(1), since the source needs 
only to route the lookup message to the temporary address 
resulting from applying the destination’s identity to the 
globally known hash function. The need to contact a faraway 
rendez-vous node in order to lookup a node located just near 
the source is alleviated by the use of cashes. 
 

X. Conclusion: 
 

Party is a network layer designed for wireless self-organizing 
networks, it is a decentralized, scalable, and independent of 
IP-like addressing limitations. Party proposes an addressing 
structure and allocation that ease routing in such networks, 
the routing strategy provided by Party is a distributed one, 
where the forwarding process is done hop by hop in a way 
resemble the forwarding process in Pastry Peer-to Peer 
protocol [7]. A tree-like logical topology is created, which 
describes the relative location of the nodes according to their 
neighborhood in the physical network. 
A small amount of information suffices to implement Party 
routing, i.e., low signaling overhead is generated (only local 
neighborhood communication), Thus the routing table size is 
O(k), where k is the number of immediate neighbors of the 
node. Moreover, a node movement does not affect Party’s 
address tree organization, i.e., it does not require the 
assignment of new addresses to other nodes already in the 
network. 
We believe, however, that Party is an innovative and 
promising approach for spontaneous networks with low 
dynamics, like wireless mesh networks where routers, once 
they have configured themselves, do not move for a long 
time.Party support dynamic networks, where during node 
mobility, Party keeps the correct execution of the routing 
procedure and ensures that the former neighbors of a mobile 
node remain reachable through some valid path. 
Our future study will include sudden node failures and a 
treatment of certain network issues, like network separation, 
networks merging. And a study of this protocol performance 
through simulation. We are now in the state of implementing 
this protocol in NS2. 
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