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Abstract— The client-server model is a commonly used model for 
distributed application programming. Most of group-
collaboration applications, such as network gaming, rely on this 
model. We call a group-collaboration application an application 
where any participating entity can centralize the shared 
information and play the role of server. In wired networks, the 
choice of the participating entity playing the server role has a 
limited impact on the performances of the application, the station 
or the network. However, in mobile ad hoc networks (MANETs) 
an inadequate server choice can have a side effect on the 
network-, the application- or the wireless station-performances. 
The objective of our current work is to propose a novel and 
complete framework for server election and maintenance in ad 
hoc networks. This framework, called P-SEAN for Policy-based 
Server Election in Ad hoc Networks, uses two concepts in order 
to perform the server election process: the Serving Ability Degree 
and the Situational Server-Election Policy. Hence, the proposed 
framework implements the different situations for server election 
and maintenance in ad hoc networks as policy-rules (Situational 
Server-Election Policy). This election and maintenance are mainly 
based on factors such as connectivity, processing power, RAM 
capacity, remaining battery life, etc. These factors define the 
Serving Ability Degree of each ad hoc node. The motivation 
behind using the Policy-based Networking paradigm is to render 
our framework extensible to incorporate additional application-
specific criteria. In addition to these two main concepts, we also 
propose a complete architecture for a P-SEAN-enabled service 
and a lightweight protocol for Server Election and Maintenance 
Exchanges. 

Keywords— server election, ad hoc networks, client-server, 
group-collaboration applications, policy-based networking, Ponder, 
COPS. 

I.  INTRODUCTION  
Mobile Ad hoc NETworks (MANETs) [1] are self-

organized and autonomous networks that have the potential to 
provide wireless and mobile computing capabilities in situation 
where efficient, economical and rapid deployment of 
communication is required, and where the use of a wired or an 
infrastructure-based wireless network is either too expensive or 
impractical. These networks are characterized by dynamic 
topologies, bandwidth-constrained variable-capacity links, and 
limited survivability. Furthermore, ad hoc nodes are battery-

operating nodes having various ranges of processing power and 
storage capacities.     

The client-server model is used by a significant part of 
nowadays network applications. For some of these 
applications, each participating entity can either play the role of 
client or server. This is the case for network gaming 
applications for instance. Indeed, in this kind of distributed 
applications, one of the participating entities is chosen to 
centralize the shared information and distributing these to the 
other entities that take part to the distributed application. Hence 
the former runs a server and serves all the other entities 
(clients). We call this kind of distributed applications group-
collaboration applications. 

The client-server model is also widely used in ad hoc 
networks. Indeed, in addition to usual group-collaboration 
applications such as network gaming, several distributed-
management and control applications proposed in the literature 
uses this model. Hence, for instance, different proposal for 
partition detection/forecasting [2,3] relies on a central server. 
Another example is the instantiation of the Policy-based 
Management architecture in ad hoc networks proposed in [4]. 
This instantiation uses also centralized policy-servers. The 
assumption pursued by all these schemes is that all ad hoc 
nodes are capable of running the server functionality. They also 
suggest that this server should be chosen regarding to the 
performances of the network, the nodes or the application. 
However, these schemes do not propose any solution for 
realizing such appropriate server election.        

Due to the performance problems that can arise from a bad 
server choice, it is clear that a more accurate policy for server 
election, than the simple ‘first arriving node policy’, is 
necessary. This policy should be based on criteria such the 
connectivity, the node processing power, its remaining battery 
life, etc. According to these criteria, the server task will be 
delegated to the node that has the best characteristics to assume 
this role. As far as we know, there are no proposals in the 
literature for server election approaches based on joint 
application/node/network performances. Our aim in this work 
is to propose a complete and extensible framework that allows 
realising the server election and maintenance processes based 
on situational and application-specific criteria.  



In order to realise the server election process the proposed 
framework bases its operations on two main concepts: the 
Serving Ability Degree and the Situational Server-Election 
Policy. Hence in our framework, each node will be assigned 
with a Serving Ability Degree (SAD) that will be calculated 
using predefined criteria. Mainly, the SAD calculation is based 
on the node performances and its location in the network. Once 
the SAD calculated, a set of algorithms, dealing with the 
various situations that may happen during the lifetime of the ad 
hoc network, are applied in order to implement the server 
election process. These algorithms form the Situational Server-
Election Policy. Indeed, each elected server has a lifetime that 
is dependant on the situations that may emerge in the ad hoc 
network: the degradation of the server characteristics 
(materialized by an important decrease of its SAD), the sudden 
disappearance of the server (server falling down for instance), 
the necessity of server replication as the server is leaving the 
network (the proximity of server departure, network partition 
detection/forecasting …) or as a better node in the network 
may host the server functionality, conflict resolution in 
presence of contending servers…. Hence each elected server 
has a lifetime in the ad hoc network after which it has to be 
replaced. In order to make the server election process 
extensible allowing the incorporation of application-specific 
criteria (in addition to the numerical criteria taken into account 
by the SAD calculation), we suggest to use the Policy-based 
Networking (PBN) paradigm [5]. Using PBN, the Situational 
Server-Election Policy is specified as a set of policy-rules. This 
is realised through the use of the Ponder policy specification 
language [6,7]. In addition to the definition of the Serving 
Ability Degree and the Situational Server-Election Policy 
concepts, we propose a complete architecture for a P-SEAN-
enabled service. This architecture includes the two concepts 
presented above and uses a lightweight protocol for handling 
the communications related to server election and maintenance 
(Server Election and Maintenance Exchanges). This latter is 
designed as an extension to the Common Open Policy Service 
(COPS) protocol [8]. Hence, a complete and extensible 
framework for Policy-based Server Election in Ad hoc 
Networks (P-SEAN) is proposed. Note that the choice of the 
Ponder policy specification language and the COPS protocol is 
mainly motivated by their flexibility and extensibility features. 

The rest of the paper is organized as follows: Section 2 
introduces the Policy-based Networking paradigm; it also 
presents the Ponder policy specification language and the 
COPS protocol. The SAD calculation within each terminal is 
discussed in section 3 followed by a detailed description of the 
Situational Server-Election Policy. Section 5 presents the  
P-SEAN-enabled service architecture and the used lightweight 
protocol for handling the Server Election and Maintenance 
Exchanges. Finally, Section 6 concludes the paper and presents 
future work. 

II. POLICY-BASED NETWORKING AND PONDER  
The aim of the Policy-based Networking technique is to 

allow the integrated management of all network, system or 
application components throughout a same management 
system. This latter will then allow applying a global 
management strategy (the policy) to all concerned components. 

Such technique can be used for network, system or application 
management. We then suggest using this technique for 
managing the server election in group-collaboration 
applications that base their operations on the client-server 
model. Hence, situational and application-specific rules can be 
introduced and used together in order to elect, maintain and re-
elect the most suitable server at a given instant. The use of 
Policy-based Networking can also allow to easily extending the 
scope of the application management beyond the server 
election process. In this latter case P-SEAN can both 
participate and take benefits from largest management 
architecture.  

In order to specify the policy-rules involved in the 
Situational Server-Election Policy, we used the Ponder policy 
specification language. For its part, the communication 
between the entities evolved in the group-collaboration 
application is handled throughout a Lightweight Protocol. This 
protocol is implemented as an extension to the COPS protocol. 
Then, in the following subsections, we present both Ponder and 
COPS. We also motivate their choice regarding to the P-SEAN 
objectives.        

A. Ponder: A Language for Policy Specification  
Ponder is a declarative object-oriented language that have 

been designed in order to allow the specification of 
management policies for distributed-object systems. Initially 
proposed for the specification of security policies, Ponder 
appeared as a flexible and extensible language. It is extensible 
as it can also be used for the management of any discipline 
other than security. Hence, in addition to security policies, 
realised throughout the authorisation, delegation, 
information filtering and refrain policies [6,7], it allows the 
definition of generic policy-rules called obligations in Ponder.  

The obligation policy is a typical ‘If Condition Then 
Action’ policy-rule. The Condition part is a Boolean expression 
that can either return true or false when evaluated. In fact, in 
Ponder this part is composed of two entities: the constraints 
and the events. In the following we briefly present the syntax of 
the obligations, constraints and events concentrating on the 
language elements that we use to specify the Situational 
Server-Election Policy. For more details on the Ponder policy 
specification language, please refer to the original references 
[6,7].    

Figure 1.  The syntaxe of Ponder events, constraints and obligation-policy. 

As shown in Figure 1, obligations (inst oblig) specify the 
actions that have to be done on the occurrence of a set of 
events and when a set of constraints are verified. The actions 
are targeting a specific domain scope defined as the subject of 
the obligation. The events are elements that become true 
instantaneously, eventually allowing the change of state of the 

inst oblig ruleName  “{“ 
on    event-specification ; 
subject  [<type>] domain-Scope-Expression ; 
do   obligation-action-list ; 
 [when  constraint-expression ; ] “}” 
 
inst event eventName = eventExpression ; 
 
inst constraint constraintName = predicate ; 



Condition part of the obligation policy. We can say that the 
events trigger the obligations when reacting to a state change 
within the managed entity. 

Note that, under the keyword event (cf. Figure 1), the 
Ponder language allows defining complex events that are a 
combination of simple events. This is realized in order to 
simplify their reuse in several obligations. The combination of 
events is realized through the use of the Boolean operators. The 
Boolean combination is also used for the definition of complex 
constraints for reuse purposes. In the following we will also 
use these two keywords for clarity purposes defining events 
and constraints with clear denominations.   

In our work, we suggest to use Ponder to implement the 
Situational Server-Election Policy due to its flexibility. 
Furthermore, thanks to the Ponder extensibility features, the 
server election process could easily be extended to incorporate 
any other type of policy-rules and specifically those related to 
application-specific criteria. Hence, if required by the 
application, security policies can easily be introduced in the 
server-election process for instance.          

B. COPS Protocol 
The IETF1 Resource Allocation Protocol (RAP) Working 

Group has specified a scalable and secure framework for policy 
definition and administration [8]. This framework introduces a 
set of components to enable policy-rules definition, saving and 
enforcing: the Policy Decision Point (PDP), the Policy 
Enforcement Point (PEP), and the Policy Repository (Figure 
2.a). PEP components are policy decision enforcers located in 
network and system equipments. The PDP is the component 
responsible for high-level decision-making process. This 
process consists of retrieving and interpreting policies, and 
implementing the decision in the network through the set of 
PEPs. The Policy Repository contains policy-rules that are 
used by the PDP. In order to exchange policy information 
and/or decisions, the PDP interacts with each PEP using one of 
the several protocols specified or extended for this purpose. 
Among them, the Common Open Policy Service (COPS) 
protocol [8] is the one which was designed specifically by the 
IETF to realize this interaction. 

COPS [8] is a lightweight client/server protocol allowing 
the exchange of policy information between a PDP and its 
PEPs. This exchange is realized through six main messages as 
described in Figure 2.b. The client open (OPN), client accept 
(CAT) and client close (CC) messages allows respectively to 
manage the connection initiation, acceptance and termination 
between the PEP and the PDP. After a connection 
establishment between the PEP and its serving PDP, the PEP 
transmits requests for decisions to the PDP using the REQ 
message. In response to a REQ, a decision message (DEC) is 
sent by the PDP. Then, the PEP reports the outcomes to the 
PDP via the RPT message. The Keep Alive (KA) message is 
used in order to allow monitoring the server/connection health. 
To do so, KA messages are periodically exchanged between 
the PEP and the PDP elements. Hence, if one of these elements 
does not receive KA message from its correspondent for a 

1 IETF: Internet Engineering Task Force  

certain time interval, the PEP discovers the disappearance of 
the PDP and vice versa. 
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Figure 2.  Policy-based Management: (a) the IETF framework, and (b) the 
COPS protocol operations. 

As in the P-SEAN framework the Situational Server-
Election Policy is implemented through the use of policy-rules, 
we suggest using the IETF’s framework to implement P-
SEAN. Note however that this is not our lone motivation. 
Indeed, as will be described in details below (cf. Sections IV 
and V.A), the node hosting the server in P-SEAN-enabled 
services is in charge of taking policy-decisions concerning the 
server lifecycle. These decisions have to be enforced by the 
other participating nodes (clients). These nodes have also to 
periodically send application-management information 
(typically their SAD) towards the server. Remind that the SAD 
is an evolving parameter as its value may depend on time-
evolving parameters (connectivity, remaining battery life …). 
Thus, as policy-decisions and management information has to 
be exchanged between the server and its clients, a possible 
candidate protocol to realize these exchanges could be a 
specific extension of the COPS protocol. Thus, the 
management plan of the server part in P-SEAN-enabled 
services encompasses a PDP while the clients run PEP 
elements in their management plan. As we will show later (cf. 
Section V.B), the flow of message exchange defined by the 
COPS protocol (Figure 2.b) can be easily extended in order to 
allow incorporating the specific messages related to the Server 
Election and Maintenance Exchanges.  

III. SAD: SERVING ABILITY DEGREE  
As previously stated, the main characteristic of ad hoc 

networks is that they do not rely on any predefined 
infrastructure. In such networks, due to the mobility of nodes it 
may happen that some nodes become temporarily unreachable. 
Furthermore, the nodes forming the ad hoc network may be 
heterogeneous in terms of capacities and battery life. If we 
consider that a set of nodes within the ad hoc network have to 
take part to a group-collaboration application and that one of 



them has to centralize certain tasks and information, it would 
be more judicious to choose the “most suitable” station to play 
this role rather than doing a random choice. In order to 
determine the “most suitable” station, a Serving Ability Degree 
is associated to each station. This Serving Ability Degree is not 
a static parameter. This parameter should take into account the 
different factors that can impact application-, node- or network-
performances. It determines the ability of each node to host the 
server functionality.  

The Serving Ability Degree can either take into account 
static factors, such as the processing power and node’s Random 
Access Memory (RAM) capacity, or moving-in-time factors, 
such as battery life or network topology. However, depending 
on the tasks that the server may accomplish and/or on the 
generated network overhead that can be induced if the server is 
far from its clients, these factors do not have the same 
importance in the server election. Hence, the formulations 
“more adequate” and “most suitable” are application specific. 
They depend on different factors and with different degrees. 
For this reason, we do not propose a single formula to calculate 
the Serving Ability Degree but a guideline towards doing this 
calculation. Following this guidelines, we also give an example 
illustrating the SAD calculation for a particular application.  

A. SAD Calculation: Principal 
There are several factors that are susceptible to have an 

impact on the performances of the application, the network or 
the node hosting the server. Among these, we can cite: node-
dependant factors such as the processing power, remaining 
battery life or RAM capacity, and connectivity-dependant 
factors such as the node position in the network or the link-
capacities. The performance impact of these factors depends on 
the application behavior. For instance, the connectivity-
dependant factors have an important performance impact for 
the applications generating important data exchanges between 
the server and its clients. Furthermore, these factors do not 
have the same impact degree. Some of them have greater 
impact than others. Hence, for applications generating 
important data exchanges between the server and its clients, the 
remaining battery life is a more important factor to deal with in 
the server election than the processing power for instance. 

From this, we can say that the Serving Ability Degree 
calculation depends on the application behavior. It is 
application specific. For this reason we propose a generic SAD 
calculation process. One can also note that the list of factors 
presented above is not exhaustive. Indeed, depending on the 
application behavior other factors can have a side effect on the 
performances of the application, the network or the node 
hosting the server. Proposing a generic SAD-calculation 
process has also the advantage of being extensible to include 
other factors.  

Figure 3.  Serving Ability Degree calculation algorithm.  

From the application point of view, the performance factors 
can be classified onto two categories:   

• Necessary conditions: this category encompasses the 
criteria that are essential to the ad hoc node in order to 
run the server functionality. Such necessary conditions 
are minimal processing power, minimal RAM 
capacity, or multi-task capabilities for instance. Thus, 
if one of these conditions is not met, the terminal is 
declared not eligible to host the server functionality. In 
this case, the SAD value corresponding to this terminal 
will be set to the null value (cf. the else part in Figure 
3).   

• Performance aspects: this category allows 
differentiating between eligible nodes (i.e. those that 
satisfy all necessary conditions). Performance aspects 
rely mainly on the node-dependant and connectivity-
dependant factors presented above. As these factors are 
heterogeneous, we suggest using a method similar to 
the Fuzzification procedure used in Fuzzy Logic [9] in 
order to calculate the SAD value. The Fuzzification is 
a procedure where a membership function is applied in 
order to translate crisp input values to values belonging 
to the same space, the fuzzy space. Once the 
Fuzzification procedure applied and the crisp values 
brought to the ‘fuzzy’ space, a normalized weighted 
addition of the obtained ‘fuzzy’ values is realized in 
order to compute the SAD value (cf. the if part in 
Figure 3). Note that the weights correspond to the 
performance-impact degree of the corresponding 
factors. Hence, there are defined to match the impact, 
of hosting the server functionality, on the application-, 
the node-, and the network-performances. As this 
impact depends on the application behavior, these 
weights are application specific. Let us also remind, 
that the word Fuzzification here relates only to the 
transformation of the crisp values into values 
belonging to the same space and not to the whole 
process involved by Fuzzy logic.    

If (all necessary conditions are verified) then 
{  

/* SAD calculation */ 

;)(
1 N

1 i

1
i

∑
∑ =

=

= xfa
a

SAD iiN

i
i

   

/* x being the crisp value, fi the Fuzzification 
function, N the number of considered factors, and 
ai the weight corresponding the ith  factor*/ 

} 
Else /* Case where the node can not run the server 

SAD = 0; 



Figure 4.  The considered ad hoc network.  

B. SAD Calculation: an Example  
In order to illustrate the SAD calculation in ad hoc 

networks, let us consider the example shown in Figure 4. The 
concerned ad hoc network is composed of 10 nodes. We 
assume that only the gray-numbered nodes are willing to 
participate to the group-collaboration application. The 
remaining nodes participate only to the connectivity. In our 
example, we assume that the ad hoc network uses a proactive 
routing protocol [1]. This allows each node to know its 
distance (in number of hops) with all the other nodes in the ad 
hoc network. The triplets (RAM capacity, processing power, 
multi- or mono-task system) characterizing each ad hoc node 
are also depicted in Figure 4. 

The factors that we consider in this example are the 
following: 

• Necessary conditions: Multi-task machine, RAM 
capacity ≥ 256Mo, and processing power ≥ 1Ghz. 

• Performance criteria: In addition to the processing 
power and the RAM capacity, the node hosting the 
server may preferably have a central position in the 
network. The central position degree of a node is given 
by the mean distance between this node and all the 
other nodes participating to the group-collaboration 
application.  

The weights assigned to each of these criteria are: a1 = 1 for 
the RAM memory, a2= 4 for the processing power, and a3 = 2 
for the topological criterion. One can note that the processing 
power is the most important criterion followed by the 
topological criterion and the RAM capacity respectively. The 
Fuzzification functions fi(x) used in our example are illustrated 
by Figure 5. 

From the necessary conditions, the eligible nodes are nodes 
1, 2 and 6. The SAD values calculation for these nodes gives:      

• SAD(1) = 1*0.1+4*0.1+2*0.748 = 1.996 

• SAD(2) = 1*0.4+4*0.55+2*0.82 = 4.24 

• SAD(6) = 1*0.4+4*0.55+2*0.712 = 4.032 

From this, we can remark that the topological criterion is 
the one that allow differentiating nodes 2 and 6.  

Figure 5.  The fuzzification functions fi(x) used in our example.  

IV. SITUATIONAL SERVER-ELECTION POLICY   
In addition to the calculation of the Serving Ability Degree 

for each node, the distributed server election process must take 
into account the dynamic feature of ad hoc networks. By 
distributed server election process we mean server election, 
maintenance and replication when required. This entire 
process, called Situational Sever Election Policy, relies on the 
different situations that may occur in an ad hoc network. These 
situations include:  

• Node arrival and departure. 

• Server replication due to network partitioning, node 
departure/disappearance or when a node with a better 
SAD exists in the network.  

• Conflict resolution in presence of contending servers. 

In order to implement the Situational Sever Election Policy, 
we suggest using the Policy-based Networking paradigm. The 
motivation behind this is twofold: simplicity and extensibility. 
Indeed, as we will show in the following subsections the 
Situational Server-Election Policy can be easily implemented 
using policy-rules. Furthermore, the use of the Policy-based 
Networking paradigm can allow the simple extension of our 
proposal to incorporate supplemental application-specific 
policy-rules in the server election process.  

In the following subsections, we describe the different 
situations that may occur in an ad hoc network and their impact 
on the server election process. The resolution of each of these 
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situations is discussed and the corresponding policy-rules are 
then specified using Ponder.       

A. New Node Arrival  
At the application launch, the terminal calculates its SAD 

and then tries to detect the presence of a server. Server search 
can be realized throughout a service discovery protocol such as 
SDP (Service Discovery Protocol) or Salutation [10,11]. The 
server search process lead to one of the following situations: 

• There is no server currently running in the network; 
however a server is starting by another node 
(ServerStarted = false, ServerStarting = true). 

• There is no server currently running in the network and 
no one is trying to start the server (ServerStarted = 
false, ServerStarting = false).  

• A server already exists in the network (ServerStarted = 
true). 

These different situations are handled by the three policy-
rules depicted in Figure 6.  

When starting a P-SEAN-enabled service, an ad hoc node 
updates the state of the (NewArrival(s)) event. This update is 
realised throughout the setting of the node.arrival.instant 
temporal variable. Hence a node is considered to be a just-
arrived-node when its node.arrival.instant is recent (i.e. during 
a certain amount of time after node.arrival.instant 
initialization). Following this update, the NewArrival(s) event 
triggers the three different policy-rules that allow handling the 
situations identified above. The first policy-rule 
(NodeJustArrived1) corresponds to the case where there is 
neither a server started nor starting for the corresponding 
application. This policy-rule allows a recently connected ad 
hoc node to start the server functionality (s.StartServer()). Note 
also that before launching the server, the corresponding node 
has to check that the value associated to its SAD is not null. 
Once the server launch started, the node immediately set the 
s.ServerPossible() variable to true. Subsequently, none of the 
other ad hoc nodes will start the server functionality when 
beginning the same P-SEAN-enabled service. After server 
launching, the state of the s.ServerPossible() and the 
s.ServerExist() variables are switched to false and true, 
respectively.     

The second triggered policy-rule (NodeJustArrived2) 
corresponds to the case where a server, corresponding to the P-
SEAN-enabled service, is currently starting (ServerStarting = 
true). In this case, the application is switched to the sleep mode 
(Time.wait(SleepPeriod)) for a certain period chosen in 
accordance to the duration of the corresponding server starting 
procedure. Then, it reinitialises the server search procedure 
(s.arrival.instant = time.now()).  Indeed, this latter action re-
trigger the three policy rules depicted in Figure 6. In the case 
where the server search procedure is successful, i.e. there is a 
server currently running in the network, the just-arrived-node 
connects to the discovered server and sends it its SAD. This 
behaviour is described by the third triggered policy-rule 
(NodeJustArrived3).     

 

Events : 

event NewArrival (node) = (node.Arrival.instant () == time.now()) ; 

Constraints : 

constraint ServerStarting = ((ServiceDiscovery().ServerExist == false)  
&& (ServiceDiscovery().ServerPossible = = true)) ; 

constraint ServerStarted = (ServiceDiscovery().ServerExist == true) ; 

Policy-rules : 

inst oblig NodeJustArrived1 { 
on  NewArrival(s) ;  
subject s =me ; 
do  (s.StartServer() || s.ServerPossible() = true) 

-> (s.ServerExiste() = true || s.ServerPossible() = false); 
when (s.SAD()<>0 && !ServerStarted && !ServerStarting); 
} 

 
inst oblig NodeJustArrived2 { 
on  NewArrival(s) ;  
subject s =me ; 
do  Time.wait(SleepPeriod) -> s.Arrival.instant = time.now() ; 
when (s.SAD()<>0 && ServerStarting) ; 
} 

 
inst oblig NodeJustArrived3 { 
on  NewArrival(s) ;  
subject s =me ; 
do s.ArrivalTo(ServiceDiscovery().server) 

-> s.sendToServer(s.SAD()) ; 
when (ServerStarted) ; 
} 

Figure 6.  Policy-rules executed at the client side by a node recently joining 
the application.  

Finally, note that these three policy-rules can not generate 
conflicting actions. Indeed, they can not be enforced at the 
same time. In fact , the constraints, allowing confirming the 
enforcement of the action-part of these policy-rules, can not be 
verified at the same time. Note also that the constraint parts of 
these policy-rules are complementary allowing handling all 
possible cases. 

B. Lifecycle of Elected Server  
The server management procedure has to deal with multiple 

situations during the server lifecycle. These situations 
correspond to the following cases:  

• The server has to be replaced as the node hosting the 
server is living the network, closing the application or 
as one of the other nodes participating to the P-SEAN-
enabled service has better characteristics to host the 
server functionality (i.e. a higher SAD value).  

• The server suddenly disappeared (server falling down). 

• Two servers are running in the network (conflict). This 
situation may happen in the case of the merge of two 
ad hoc networks on which the same P-SEAN-enabled 
service is running.  

The following sub-sections present the policy-rules 
allowing handling these situations.  

1) Server Departure    
There are two cases after which the server functionality has 

to be moved from one node to another: (i) the case where the 
node hosting this functionality is on the point of leaving the 



network2 or closing the P-SEAN-enabled service, and (ii) the 
case where another node participating to the distributed 
application has better characteristics to host the server 
functionality (i.e. a higher SAD value).  

• In the former case, the server functionality should be 
moved before the application or the network is left. 
This operation is however not possible if all the 
remaining participants have a null SAD value.  

• In the latter case, there is a risk that several server-
switching occur. Indeed, each time a participant has a 
better SAD, a server switching may happen. Thus, at 
start-up for instance, an important number of 
participants may join the P-SEAN-enabled service with 
somewhat small temporal shifts. As these nodes have 
different capabilities, it may happen that several 
server-switching occur during this particular period. 
Furthermore, as nodes can have their SAD evolving 
during time3, it may happen that the SAD evolution 
makes the node having the best-SAD also evolves 
during time. Then, in order to control the number of 
possible server switching, we make this procedure 
possible only in predefined periods. We also prohibit 
server switching if the difference between the two 
concerned SAD is below a certain threshold. Hence, 
periodically, the server checks the SAD of each 
registered node. And for the best one, it first checks 
that the ratio between the best-SAD and its SAD is 
above a carefully chosen threshold. If yes, a server 
switching is triggered. 

Events : 

event NodeIsLeaving(me) = (PartitionPredict() || me.Logout().begin) ; 
event ServerIsNotBest = (Best.SAD()/me.SAD() > SADThresh) ; 

Constraints : 

constraint SubstitutExist = (Best.SAD <> Null ) ; 
constraint IamServer = (ServiceDiscovery().server.adress() = = 

my.adress()) ; 

Policy-rules : 

inst oblig ServerReplacementToBeDone1 { 
on  NodeIsLeaving(s) ; 
subject  s =me ; 
do s.sendTo(BestSubstitute(),Cmd(StartServer()))  

-> StartCmd.sent =true ; 
when  (IamServer && SubstitutExist) ; 
} 
 
inst oblig ServerReplacementToBeDone2 { 
on  ServerIsNotBest ; 
subject  s =me ; 
do s.sendTo(BestSubstitute(),Cmd(StartServer()))  

-> (StartCmd.sent =true||  
StartCmd.waitReport = true) ; 

when (IamServer) ; 
} 

Figure 7.  Policy-rules executed by the server when it initiates the switching 
procedure. 

2 The node can be sensed as being on the point of leaving the network if it is 
starting the turn off procedure or when network partition is 
detected/forecasted. This latter can be sensed through the use of one of the 
existing server-based partition detection/prediction methods [2,3] for instance. 
3 The calculation of the SAD can imply temporally evolving parameters such 
as remaining battery life, connectivity constraints … 

Policy-rules described in Figure 7 represent these 
operations. Hence, the server has to be moved either when the 
actual node hosting the server is not the best one 
(ServerIsNotBest), or when this one is leaving the network or 
the application (NodeIsLeaving(s)). In this situation the server 
is moved towards its best substitute 
(s.sendTo(BestSubstitute(),Cmd(StartServer())) if this one 
exists (SubstitutExist). Note that, the server-move implies the 
sending of the start server command and the replication of all 
information needed by the started server in order to operate 
properly. Afterwards, the closing server updates the 
corresponding state variables ‘StartCmd.sent = true’ and 
‘StartCmd.waitReport = true’. Thus, the actual node hosting 
the server puts itself on standby waiting for a positive report 
from the newly started server (RapportOK(BestSubstitute()). 
Upon the reception of this report (cf. Figure 8), the leaving 
server send a message to its clients in order to redirect them 
towards the started server (ServerReplacementDone). In the 
case where the positive report is not received, the server will 
only send a message towards its clients informing them about 
its destiny (ServerReplacementNotDone).   

Events : 

event ShouldLeave(me) = (PartitionImminence() || me.Logout().fin) ; 
event ReportOK(node) = (node.Report.reveived() &&  

(node.Report.status() = = “OK”)) ; 

Constraints : 

constraint IamServer = (ServiceDiscovery().server.adress() = = 
my.adress()) ; 

constraint SentStart = (StartCmd.sent = = true) ; 
constraint WaitRepor = (StartCmd.WaitReport = = true) ; 

Policy-rules : 

inst oblig ServerReplacementDone { 
on   RapportOK(BestSubstitute()) ; 
subject  s =me ; 
do (s.sendTo(All(),s.ServRedirct(BestSubstitute())|| 

WaitReport = false) -> s.sendTo(All(),s.ClientClose()) ; 
when (IamServer && SentStart) ; 
} 

 
inst oblig ServerReplacementNotDone { 
on   NodeShouldLeave(s) ; 
subject  s =me ; 
do s.sendTo(All(),s.ClientClose()) ; 
when (IamServer && SentStart && WaitReport) ; 
} 

Figure 8.  Policy-rules executed by the server when it concludes the 
switching procedure. 

For their part (cf. Figure 9), when a node not hosting the 
server (!IamServer) is one the point of leaving the application 
or the network (NodeIsLeaving(s)), it inform the server of its 
intent (s.sendTo(Server,s.ClientClose())). Once triggered by 
the corresponding (ClientClose) event, the server removes the 
closed client from its substitute table, if this one is registered 
within this table, (s.SubstituteTable.remove(CC.from())).    

 



Events : 

event NodeIsLeaving(me) = (PartitionPredict() || me.Logout().begin) ; 
event ClientClose = (CC.reveived() && (IamServer)) ; 

Constraints : 

constraint IamServer = (ServiceDiscovery().server.adress() = = 
my.adress()) ; 

Policy-rules : 

inst oblig DeconnexionClientReq { 
on   NodeIsLeaving(s) ; 
subject  s =me ; 
do s.sendTo(Server,s.ClientClose()) ; 
when (!IamServer) ; 
} 

 
inst oblig DeconnexionClientResp { 
on   ClientClose ; 
subject  s =me ; 
do s.SubstituteTable.remove(CC.from()) ; 
when (IamServer) ; 
} 

Figure 9.  Policy-rules executed at the client side when this one is ready to 
disconnect from the application. 

Upon the reception of the start command (ReceivedStart), 
the targeted node must answer it by the affirmative (cf. Figure 
10). It then sends a positive report to the server 
‘s.sendTo(Server,Report(“OK”))’ and starts the server 
launching procedure as described in Figure 6. The other clients, 
will then connect to the newly elected server by sending it their 
SAD (s.connectTo(server)-> s.sendTo(server,s.SAD())). Thus, 
the server replacement is done. 

Events : 

constraint ServerStarting = ((ServiceDiscovery().ServerExist== false) 
&& (ServiceDiscovery().ServerPossible == true)) ; 

Constraints : 

event ReceivedServRedirect = (ServRedirect.reveived()) ; 
event ReceivedStart = (StartCmd.reveived() ) ; 

Policy-rules : 

inst oblig AcceptStartingServer { 
on  ReceivedStart ; 
subject s =me ; 
do s.sendTo(Server,Report(“OK”)) -> (s.ServerPossible() = true 

|| s.StartServer()) -> s.ServerExist() = true; 
} 

 
inst oblig ConnectToNewServer { 
on  ReceivedServRedirect ; 
subject s =me ; 
do s.connectTo(ReceivedServRedirect.server)-> 

s.sendTo(server,s.SAD()) ; 
} 

Figure 10.  Policy-rules executed in order to make effective the server 
replacement 

2) Server Disappearance  
This case represents the case where the server disappears 

suddenly (the node hosting the server fall down for instance). 
In order to handle such situation, the clients monitor the server 
throughout the use of the periodically-sent Keep Alive 
messages (cf. Section II.B). Hence, when one of the clients 
detects the server disappearance as it does not received several 
Keep Alive messages; it triggers the node arrival procedure 
described in Section V.A. This triggering is realized throughout 

the re-initialization of the s.arrival.instant variable. The 
policy-rules depicted in Figure 11 describe this case. 

Events : 

constraint ServRedirectNotReceived = (!ServRedirect.reveived()) ; 

Constraints : 

event ServerClose = (CC.reveived() && (CC.from() == Server.adress())) ; 

Policy-rules : 

inst oblig ReinitiateServerElectionProcedure { 
on  ServerClose ; 
subject    s =me ; 
 do  s.arrival.instant = time.now() ; 
when ServRedirectNotReceived) ; 
} 

Figure 11.  Policy-rules triggered by each client at the event of server 
disappearance. 

3) Server-Election Conflict-Resolution  
In this section, we are concerned by the case where two or 

more servers are present in the ad hoc network for serving the 
clients of a same P-SEAN-enabled service. In this case, only 
one server has to be maintained, the others have to be closed. 
As for the election, the server that should be maintained is the 
one having the largest SAD value. Server conflicts may happen 
whilst two or several ad hoc networks, each of which 
containing a server, are merged. Note that, conflict detection is 
realised throughout periodic triggering of the server search 
procedure (Service Discovery) by ‘each’ server.   

Hence, when a server detects the existence of another 
server, it sends it its SAD. Upon the reception of the SAD 
originating from another server, the concurrent server interprets 
this as a server close order. It will apply this order only in the 
case where its SAD is smaller than the received one. In the case 
where its SAD is larger than the received one, it replies back to 
its concurrent server by sending its SAD. Then, the server who 
has the smallest SAD will be closed. These situations are 
described by the ServerTwin2 and ServerTwin3 policy-rules of 
Figure 12. The ServerTwin1 policy-rule describes how the 
concurrent-server detection is handled. 

ServerTwin4 and ServerTwin5 policy-rules (Figure 12) 
describe for their part the case where the SAD values of both 
concurrent-servers are equals. In this case the arising question 
is “which of the concurrent servers must be stopped?” This 
situation is qualified as a contention situation. To resolve this 
contention situation, we suggest using a Binary Exponential 
Backoff (BEB) procedure. This procedure is currently used in 
802.11 networks for contention resolution between concurrent 
frames aiming to access the shared wireless medium at the 
same time [12]. Hence, in our studied situation, when a 
contending server discovers that its SAD is equal to the SAD 
of its concurrent-server in the networks, it randomly chooses a 
timer value between 0 and CW. It then waits until this timer is 
reached. When this timer is reached, the server sends a server-
close order (s.sendCloseServer(CloseServerReceived()) to its 
concurrent-server. The concurrent server receiving this order 
has then to close. It may happen that both concurrent servers 
send the server close order approximately at the same time. In 
this case, the contention is not resolved. Then, for each of the 
remaining concurrent servers, the CW value is doubled, a new 



timer value is randomly chosen, and the contention resolution 
procedure is triggered again (CW=CW*2 -> 
Time.wait(rand()*CW)). This procedure is repeated until one 
of the concurrent servers closes (cf. ServerTwin4 and 
ServerTwin5 policy-rules).  

Events : 

event AnotherServer = (IamServer && 
ServiceDiscovery().server.adress() <> my.adress()); 

event ConcurantServer= (CloseServerReceived().status == true) ; 

Constraints : 

constraint SentSAD = (SAD.sent = = true) ; 

Policy-rules : 

inst oblig ServerTwin1 { 
on AnotherServer ; 
subject  s =me ; 
do s.sendCloseServer(ServiceDiscovery().server.adress(), 

s.SAD()) -> SAD.sent = true ; 
} 
 
inst oblig ServerTwin2 { 
on  ConcurantServer ; 
subject  s =me ; 
do s.sendTo(CloseServerReceived().server, ‘ClosingS’))-> 

s.sendTo(All(),s.ServRedirct(BestSubstitute())) -> 
s.sendTo(All(),s.ClientClose()) ; 

when (IamServer && CloseServerReceived().SAD > s.SAD()) ; 
} 
 
inst oblig ServerTwin3 { 
on  ConcurantServer ; 
subject  s =me ; 
do  s.sendCloseServer(CloseServerReceived().server,s.SAD()) -> 

SAD.sent = true ; 
when (IamServer && CloseServerReceived().SAD < s.SAD()) ; 
} 
 
inst oblig ServerTwin4 { 
on  ConcurantServer ; 
subject  s =me ; 
do  s.sendTo(CloseServerReceived().server, ‘ClosingS’))-> 

s.sendTo(All(),s.ServRedirct(BestSubstitute())) -> 
s.sendTo(All(),s.ClientClose()) -> CW =10 ; 

when (IamServer && CloseServerReceived().SAD == s.SAD() && 
!SentSAD) ; 

} 
 

inst oblig ServerTwin5 { 
on  ConcurantServer ; 
subject  s =me ; 
do SAD.sent = false -> CW=CW*2 -> Time.wait(rand()*CW)-> 

s.sendCloseServer(CloseServerReceived().server,s.SAD()) -> 
SAD.sent = true ; 

when (IamServer && CloseServerReceived().SAD == s.SAD() && 
SentSAD) ; 

} 

Figure 12.  Policy-rules for server-election conflict-resolution. 

Note that, before leaving, each server may transfer required 
state information to the lastly elected server to enable it to 
operate properly.           

Note also that the proposed policy-rules treat the case 
where only two servers are competing in the network. Indeed, 
as a situation where more than two servers are present in the ad 
hoc network at the same time is not a common situation, we 
suggest that the conflict-detecting server treat them 
sequentially as long as this one is re-elected. If it is not re-
elected, the newly re-elected server will be responsible for 
conflict detection and resolution.  

  

Figure 13.  P-SEAN-enabled service architecture. 

V. POLICY-BASED SERVER ELECTION IN AD HOC 
NETWORKS: ARCHITECTURE AND COPS-SEME PROTOCOL  

After having presented in details the two main concepts 
behind the P-SEAN framework, namely the Serving Ability 
Degree and the Situational Server-Election Policy, let us now 
discuss how these two concepts could be introduced in group-
collaboration applications. Indeed, a P-SEAN-enabled service 
includes both the group-collaboration application and its 
management plan (Figure 13). The management plan is 
designed and implemented in such a way that it is transparent 
to the group-collaboration application operations. It is also 
reusable for any other group-collaboration application.    

In the following subsections, a detailed description of both 
the P-SEAN-enabled Service Architecture and the COPS 
extension for Server Election and Maintenance Exchanges 
(SEME) is given. 

A. P-SEAN-enabled Service Architecture   
From what we described earlier, P-SEAN is based on two 

main concepts: The Situational Server-Election Policy 
described in Section IV and the Serving Ability Degree 
described in Section III. The former is not application-
dependent and is then unchanging. The latter is however 
application-driven as we stated above. Indeed, depending on 
the targeted service, this one would use specific sensors that 
have to be included in the management plan. These sensors are 
implemented as a set of plug-ins retrieving management 
information (system characteristics) from the system and/or 
monitoring (routing tables, remaining battery capacity …) it. 
These sensors are triggered by the SAD-processing module 
first at start-up and then periodically.  When triggered, they 
returns or compute the targeted value (remaining battery life, 
mean distance to the other nodes participating to the P-SEAN-
enabled service …). The SAD-processing module is a generic 
configurable module. Indeed, after retrieving the numerical 
values returned by the corresponding sensors, it applies the 
configured weights and the Fuzzification functions on them in 
order to compute the SAD value. It then triggers the policy-
engine periodically in order to update the SAD value. This 
latter will then be compared to all the SAD values stored 
within the Policy Repository. Note that the Substitute-SADs 
Store is also periodically updated. Hence, all the SAD values of 
all the disconnected clients are removed. Also, all the 
connected clients send periodically their SAD using COPS-



SEME. This allows updating the SAD values for connected 
clients. Note that the COPS SEME daemon allows a P-SEAN 
server to receive management information from its clients 
(typically SAD values) and also to send policy decisions (such 
as the client close, server redirection, server close orders) 
towards its clients. In addition to the sensors defined for SAD 
processing, other sensors are needed by the P-SEAN 
management plan. These sensors are the sensors that help 
detecting server departure (network partitioning 
detection/forecasting, application or node closing …). Note that 
these sensors are the one that triggers the policy-rules related to 
server replacement (cf. Section IV.B.1). 

The policy-engine takes all the decisions related to the 
server lifecycle. Hence, as stated above, when it runs the 
server, it may take policy-decisions (PDP) that have to be 
enforced within the other nodes. The policy-engine is also a 
policy enforcer (PEP). Indeed, whether the node is running the 
server or not, the policy engine enforces the decisions that 
concern the server starting or server replication. This is realized 
throughout the actuators. These decisions can either be 
received from a closing server or inferred from the Situational 
Server-Election Policy. The former case corresponds to the 
case where the old server has to be replicated (i.e. starting the 
new server within the node and replicating the shared 
information). The latter case corresponds to the case where the 
concerned node detects that there is no server currently running 
or starting in the network.   

Note finally that in addition to the policy-rules defined by 
the Situational Server-Election Policy, the P-SEAN-enabled 
service may need other management policies. These policies 
can be related to server election, such as server election based 
on trust, per-cluster server election extension …, or not. These 
policies have to be specified in Ponder and introduced in the 
system throughout the Application-driven Policy Management 
API.   

B. A COPS extension for Server Election and Maintenance 
Exchanges   
According to the policy-rules defined by the Situational 

Server-Election Policy (Section IV), many information 
exchanges are realized between both the P-SEAN server and its 
clients. In order to realize these exchanges, a lightweight COPS 
protocol extension is proposed. The exchanges that have to be 
handled are of four types: 

• Node connection to the server. 

• Connection monitoring throughout KA messages. 

• Decisions related to server departure. 

• Decisions related to server-conflict resolution.  

As will be explained in the following subsections, these 
situations can easily be implemented as COPS protocol 
extension. This is what motivated the choice of this protocol 
for P-SEAN policy-decisions and management information 
exchanges.  

 

 

1) Node Arrival 
When the application is launched, the server search 

procedure looks for a server which has already been elected 
and started. In the case where a P-SEAN server exists, the P-
SEAN-enabled service starts as a client, connects to this server, 
and it sends its SAD to it. This is realized through the use of 
the connection procedure proposed in the COPS protocol. The 
SAD value will be sent within the OPN message as a client 
specific feature (i.e. as a named ClientSI object in the COPS 
terminology [8]).    

2) Connection Monitoring 
As explained above (cf. Section IV.B.2), connection 

monitoring is realized through the use of periodical Keep Alive 
exchanges between the server and each of its clients as 
proposed in COPS [8]. The use of these messages allows also 
the exchange of periodical information such as the SAD values. 
Indeed, as explained earlier, the SAD value is an evolving 
parameter. Furthermore, this evolution can not be predicted as 
it depends on multiple parameters. Each client has to send this 
value towards the server in order for this latter to maintain a list 
of possible substitutes. To do so, the clients use the KA 
messages to send their SAD periodically towards the server. 
Note that the server do not include any information within the 
echo KA it sends in response. The KA message format is then 
extended in order to encompass client specific feature (i.e. a 
named ClientSI object), namely the SAD value. Indeed, it does 
not contain such object in the legacy COPS protocol [8].    

3) Server Departure Decisions 
When a server has to be replaced by another participating 

node, it first informs this node by sending an unsolicited 
decision message (DEC). This decision message will 
encompass a decision object meaning that the corresponding 
node has to start the server functionality. It may also contain 
server specific data (ClientSI Data). The elected substitute 
acknowledges positively this decision by sending a report 
message (RPT). This is realized after server starting. 

The closing server sends a Client Close (CC) message to all 
connected clients. Note also that in COPS, the PDP when 
closing PEP sessions may use the optional PDP Redirect 
Address Specific Object (PDPRedirAddr) to redirect its clients 
(PEPs) to the alternate server. This optional feature is used in 
P-SEAN in the case where a positive RPT is received by the 
closing server. 

4) Server Conflict Decisions 
In the case where a server detects one contending server, it 

connects to the contending server as a client in order to inform 
it about the conflict situation. To do so, the conflict-detecting 
server connects to the other servers using a slightly modified 
procedure as the one presented in Section V.B.1.  

Each COPS message belonging to a particular COPS 
extension, identify the COPS extension to which it belongs 
using a particular COPS object: the client-type. This object is 
the unique identifier associated to a particular COPS extension. 
COPS SEME, being a COPS extension, has a unique identifier 
it uses for its normal operations. Then, in the case where a 
server detects a contending server (abnormal operational 
mode), it connects to it following the same procedure described 



in Section V.B.1 but using a COPS extension identifier that is 
different from the one used for normal COPS SEME 
operations. This specific identifier is used solely for contention 
resolution in COPS SEME. Hence, the contacted server will be 
informed by the conflict. In all cases the contending server 
replies by sending a Client Close message encompassing its 
SAD value within the Error field contained in this COPS 
message. As a consequence, three situations may happen:  

• The contending server has a better SAD. In this case 
the conflict-detecting server triggers a server 
replacement procedure. 

• The conflict-detecting server has a better SAD. In this 
case the contending server triggers a server 
replacement procedure. 

• The SAD values of both servers are equal. In this case 
both of them enter the BEB procedure and resend a 
Client Close (CC) message after the timer expires. 
Remind that the BEB procedure is repeated until one of 
the two servers triggers a server replacement 
procedure.   

VI. CONCLUSION AND FUTURE WORK 
Group-collaboration applications are client-server 

applications where any participating entity can centralize the 
shared information and play the role of server. This kind of 
applications is widely used in both wired and wireless 
networks. Among them, numerous distributed management and 
control applications proposed for ad hoc networks use this 
mode. All these proposals argue on the necessity to realize an 
appropriate server election regarding to the performances of the 
network, the wireless station or the application. Indeed, it is 
clear that an inadequate choice of the entity running the server 
functionality can have a side effect on the network-, the 
application-, or the wireless station-performances. 

In this paper we proposed a complete framework for 
Policy-based Server Election in Ad hoc Networks (P-SEAN). 
We identified the main concepts upon which this framework 
should be built, namely the Serving Ability Degree and the 
Situational Server-Election Policy, and we formalized them. 
Hence, the proposed framework implements all the situations 
that may happen for server election and maintenance in ad hoc 
networks (Situational Server-Election Policy). These situations 
have been specified as policy-rules thanks to the widely used 
Ponder policy specification language. Our framework also 
bases the election and maintenance processes on factors such 
as connectivity, processing power, RAM capacity, remaining 
battery life, etc. The Serving Ability Degree of each 
participating entity is hence processed using these factors. As it 
may depend on application-specific criteria, we do not propose 
a single formula for the processing of the Serving Ability 
Degree but a guideline towards doing this processing. Note that 
this one is performed using a method inspired from the 
Fuzzification procedure (Fuzzy Logic). Finally, in order to 
realize the Server Election and Maintenance Exchanges, a 
lightweight extension of the COPS protocol has also been 
proposed. 

Note that our framework is generic and can be used with 
any group-collaboration application. It is also independent 
from the application implementation. One of the main features 
of the proposed framework is its extensibility. Indeed, as we 
used the Policy-based Networking paradigm, we made our 
framework capable of incorporating any additional application-
specific criteria whether this one are specified as policies. 
Hence, the server election process may encompass policy-rules 
related to trust, to cluster/zone based election, or others.  

Our framework uses several timers (KA timers, Contention 
Windows, Sleep Periods …). These timers have to be tuned 
adequately. The target of our future work is to made practical 
experiments and simulations in order to adequately adjust these 
timers. A complete simulation study aiming to demonstrate the 
robustness degree of such framework regarding to node 
velocities and mobility models will also be the subject of our 
future work.   
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