
P-SEAN: A Framework for Policy-based Server
Election in Ad hoc Networks

Yacine M. Ghamri-Doudane*, Sidi-Mohammed Senouci**, and Nazim Agoulmine*
*Networks and Multimedia Systems Research Group, IIE and University of Evry joint Research Group

IIE, 18 Allée Jean Rostand, 91025 Evry Cedex – France.
ghamri@iie.cnam.fr, Nazim.agoulmine@iup.univ-evry.fr

** CORE / M2I / R2A R&D Unit, France Telecom R&D
2 Av. Pierre Marzin, 22307, Lannion, France.
sidimohammed.senouci@francetelecom.com

Abstract— The client-server model is a commonly used model for
distributed application programming. Most of group-
collaboration applications, such as network gaming, rely on this
model. We call a group-collaboration application an application
where any participating entity can centralize the shared
information and play the role of server. In wired networks, the
choice of the participating entity playing the server role has a
limited impact on the performances of the application, the station
or the network. However, in mobile ad hoc networks (MANETs)
an inadequate server choice can have a side effect on the
network-, the application- or the wireless station-performances.
The objective of our current work is to propose a novel and
complete framework for server election and maintenance in ad
hoc networks. This framework, called P-SEAN for Policy-based
Server Election in Ad hoc Networks, uses two concepts in order
to perform the server election process: the Serving Ability Degree
and the Situational Server-Election Policy. Hence, the proposed
framework implements the different situations for server election
and maintenance in ad hoc networks as policy-rules (Situational
Server-Election Policy). This election and maintenance are mainly
based on factors such as connectivity, processing power, RAM
capacity, remaining battery life, etc. These factors define the
Serving Ability Degree of each ad hoc node. The motivation
behind using the Policy-based Networking paradigm is to render
our framework extensible to incorporate additional application-
specific criteria. In addition to these two main concepts, we also
propose a complete architecture for a P-SEAN-enabled service
and a lightweight protocol for Server Election and Maintenance
Exchanges.

Keywords— server election, ad hoc networks, client-server,
group-collaboration applications, policy-based networking, Ponder,
COPS.

I. INTRODUCTION
Mobile Ad hoc NETworks (MANETs) [1] are self-

organized and autonomous networks that have the potential to
provide wireless and mobile computing capabilities in situation
where efficient, economical and rapid deployment of
communication is required, and where the use of a wired or an
infrastructure-based wireless network is either too expensive or
impractical. These networks are characterized by dynamic
topologies, bandwidth-constrained variable-capacity links, and
limited survivability. Furthermore, ad hoc nodes are battery-

operating nodes having various ranges of processing power and
storage capacities.

The client-server model is used by a significant part of
nowadays network applications. For some of these
applications, each participating entity can either play the role of
client or server. This is the case for network gaming
applications for instance. Indeed, in this kind of distributed
applications, one of the participating entities is chosen to
centralize the shared information and distributing these to the
other entities that take part to the distributed application. Hence
the former runs a server and serves all the other entities
(clients). We call this kind of distributed applications group-
collaboration applications.

The client-server model is also widely used in ad hoc
networks. Indeed, in addition to usual group-collaboration
applications such as network gaming, several distributed-
management and control applications proposed in the literature
uses this model. Hence, for instance, different proposal for
partition detection/forecasting [2,3] relies on a central server.
Another example is the instantiation of the Policy-based
Management architecture in ad hoc networks proposed in [4].
This instantiation uses also centralized policy-servers. The
assumption pursued by all these schemes is that all ad hoc
nodes are capable of running the server functionality. They also
suggest that this server should be chosen regarding to the
performances of the network, the nodes or the application.
However, these schemes do not propose any solution for
realizing such appropriate server election.

Due to the performance problems that can arise from a bad
server choice, it is clear that a more accurate policy for server
election, than the simple ‘first arriving node policy’, is
necessary. This policy should be based on criteria such the
connectivity, the node processing power, its remaining battery
life, etc. According to these criteria, the server task will be
delegated to the node that has the best characteristics to assume
this role. As far as we know, there are no proposals in the
literature for server election approaches based on joint
application/node/network performances. Our aim in this work
is to propose a complete and extensible framework that allows
realising the server election and maintenance processes based
on situational and application-specific criteria.

In order to realise the server election process the proposed
framework bases its operations on two main concepts: the
Serving Ability Degree and the Situational Server-Election
Policy. Hence in our framework, each node will be assigned
with a Serving Ability Degree (SAD) that will be calculated
using predefined criteria. Mainly, the SAD calculation is based
on the node performances and its location in the network. Once
the SAD calculated, a set of algorithms, dealing with the
various situations that may happen during the lifetime of the ad
hoc network, are applied in order to implement the server
election process. These algorithms form the Situational Server-
Election Policy. Indeed, each elected server has a lifetime that
is dependant on the situations that may emerge in the ad hoc
network: the degradation of the server characteristics
(materialized by an important decrease of its SAD), the sudden
disappearance of the server (server falling down for instance),
the necessity of server replication as the server is leaving the
network (the proximity of server departure, network partition
detection/forecasting …) or as a better node in the network
may host the server functionality, conflict resolution in
presence of contending servers…. Hence each elected server
has a lifetime in the ad hoc network after which it has to be
replaced. In order to make the server election process
extensible allowing the incorporation of application-specific
criteria (in addition to the numerical criteria taken into account
by the SAD calculation), we suggest to use the Policy-based
Networking (PBN) paradigm [5]. Using PBN, the Situational
Server-Election Policy is specified as a set of policy-rules. This
is realised through the use of the Ponder policy specification
language [6,7]. In addition to the definition of the Serving
Ability Degree and the Situational Server-Election Policy
concepts, we propose a complete architecture for a P-SEAN-
enabled service. This architecture includes the two concepts
presented above and uses a lightweight protocol for handling
the communications related to server election and maintenance
(Server Election and Maintenance Exchanges). This latter is
designed as an extension to the Common Open Policy Service
(COPS) protocol [8]. Hence, a complete and extensible
framework for Policy-based Server Election in Ad hoc
Networks (P-SEAN) is proposed. Note that the choice of the
Ponder policy specification language and the COPS protocol is
mainly motivated by their flexibility and extensibility features.

The rest of the paper is organized as follows: Section 2
introduces the Policy-based Networking paradigm; it also
presents the Ponder policy specification language and the
COPS protocol. The SAD calculation within each terminal is
discussed in section 3 followed by a detailed description of the
Situational Server-Election Policy. Section 5 presents the
P-SEAN-enabled service architecture and the used lightweight
protocol for handling the Server Election and Maintenance
Exchanges. Finally, Section 6 concludes the paper and presents
future work.

II. POLICY-BASED NETWORKING AND PONDER
The aim of the Policy-based Networking technique is to

allow the integrated management of all network, system or
application components throughout a same management
system. This latter will then allow applying a global
management strategy (the policy) to all concerned components.

Such technique can be used for network, system or application
management. We then suggest using this technique for
managing the server election in group-collaboration
applications that base their operations on the client-server
model. Hence, situational and application-specific rules can be
introduced and used together in order to elect, maintain and re-
elect the most suitable server at a given instant. The use of
Policy-based Networking can also allow to easily extending the
scope of the application management beyond the server
election process. In this latter case P-SEAN can both
participate and take benefits from largest management
architecture.

In order to specify the policy-rules involved in the
Situational Server-Election Policy, we used the Ponder policy
specification language. For its part, the communication
between the entities evolved in the group-collaboration
application is handled throughout a Lightweight Protocol. This
protocol is implemented as an extension to the COPS protocol.
Then, in the following subsections, we present both Ponder and
COPS. We also motivate their choice regarding to the P-SEAN
objectives.

A. Ponder: A Language for Policy Specification
Ponder is a declarative object-oriented language that have

been designed in order to allow the specification of
management policies for distributed-object systems. Initially
proposed for the specification of security policies, Ponder
appeared as a flexible and extensible language. It is extensible
as it can also be used for the management of any discipline
other than security. Hence, in addition to security policies,
realised throughout the authorisation, delegation,
information filtering and refrain policies [6,7], it allows the
definition of generic policy-rules called obligations in Ponder.

The obligation policy is a typical ‘If Condition Then
Action’ policy-rule. The Condition part is a Boolean expression
that can either return true or false when evaluated. In fact, in
Ponder this part is composed of two entities: the constraints
and the events. In the following we briefly present the syntax of
the obligations, constraints and events concentrating on the
language elements that we use to specify the Situational
Server-Election Policy. For more details on the Ponder policy
specification language, please refer to the original references
[6,7].

Figure 1. The syntaxe of Ponder events, constraints and obligation-policy.

As shown in Figure 1, obligations (inst oblig) specify the
actions that have to be done on the occurrence of a set of
events and when a set of constraints are verified. The actions
are targeting a specific domain scope defined as the subject of
the obligation. The events are elements that become true
instantaneously, eventually allowing the change of state of the

inst oblig ruleName “{“
on event-specification ;
subject [<type>] domain-Scope-Expression ;
do obligation-action-list ;
 [when constraint-expression ;] “}”

inst event eventName = eventExpression ;

inst constraint constraintName = predicate ;

Condition part of the obligation policy. We can say that the
events trigger the obligations when reacting to a state change
within the managed entity.

Note that, under the keyword event (cf. Figure 1), the
Ponder language allows defining complex events that are a
combination of simple events. This is realized in order to
simplify their reuse in several obligations. The combination of
events is realized through the use of the Boolean operators. The
Boolean combination is also used for the definition of complex
constraints for reuse purposes. In the following we will also
use these two keywords for clarity purposes defining events
and constraints with clear denominations.

In our work, we suggest to use Ponder to implement the
Situational Server-Election Policy due to its flexibility.
Furthermore, thanks to the Ponder extensibility features, the
server election process could easily be extended to incorporate
any other type of policy-rules and specifically those related to
application-specific criteria. Hence, if required by the
application, security policies can easily be introduced in the
server-election process for instance.

B. COPS Protocol
The IETF1 Resource Allocation Protocol (RAP) Working

Group has specified a scalable and secure framework for policy
definition and administration [8]. This framework introduces a
set of components to enable policy-rules definition, saving and
enforcing: the Policy Decision Point (PDP), the Policy
Enforcement Point (PEP), and the Policy Repository (Figure
2.a). PEP components are policy decision enforcers located in
network and system equipments. The PDP is the component
responsible for high-level decision-making process. This
process consists of retrieving and interpreting policies, and
implementing the decision in the network through the set of
PEPs. The Policy Repository contains policy-rules that are
used by the PDP. In order to exchange policy information
and/or decisions, the PDP interacts with each PEP using one of
the several protocols specified or extended for this purpose.
Among them, the Common Open Policy Service (COPS)
protocol [8] is the one which was designed specifically by the
IETF to realize this interaction.

COPS [8] is a lightweight client/server protocol allowing
the exchange of policy information between a PDP and its
PEPs. This exchange is realized through six main messages as
described in Figure 2.b. The client open (OPN), client accept
(CAT) and client close (CC) messages allows respectively to
manage the connection initiation, acceptance and termination
between the PEP and the PDP. After a connection
establishment between the PEP and its serving PDP, the PEP
transmits requests for decisions to the PDP using the REQ
message. In response to a REQ, a decision message (DEC) is
sent by the PDP. Then, the PEP reports the outcomes to the
PDP via the RPT message. The Keep Alive (KA) message is
used in order to allow monitoring the server/connection health.
To do so, KA messages are periodically exchanged between
the PEP and the PDP elements. Hence, if one of these elements
does not receive KA message from its correspondent for a

1 IETF: Internet Engineering Task Force

certain time interval, the PEP discovers the disappearance of
the PDP and vice versa.

Policy
Repository

PDPPEP
COPS

TCP/IP Connection

OPN

CAT

REQ

DEC

RPT

CC

KA messages

KA messages

(b)

(a)

Figure 2. Policy-based Management: (a) the IETF framework, and (b) the
COPS protocol operations.

As in the P-SEAN framework the Situational Server-
Election Policy is implemented through the use of policy-rules,
we suggest using the IETF’s framework to implement P-
SEAN. Note however that this is not our lone motivation.
Indeed, as will be described in details below (cf. Sections IV
and V.A), the node hosting the server in P-SEAN-enabled
services is in charge of taking policy-decisions concerning the
server lifecycle. These decisions have to be enforced by the
other participating nodes (clients). These nodes have also to
periodically send application-management information
(typically their SAD) towards the server. Remind that the SAD
is an evolving parameter as its value may depend on time-
evolving parameters (connectivity, remaining battery life …).
Thus, as policy-decisions and management information has to
be exchanged between the server and its clients, a possible
candidate protocol to realize these exchanges could be a
specific extension of the COPS protocol. Thus, the
management plan of the server part in P-SEAN-enabled
services encompasses a PDP while the clients run PEP
elements in their management plan. As we will show later (cf.
Section V.B), the flow of message exchange defined by the
COPS protocol (Figure 2.b) can be easily extended in order to
allow incorporating the specific messages related to the Server
Election and Maintenance Exchanges.

III. SAD: SERVING ABILITY DEGREE
As previously stated, the main characteristic of ad hoc

networks is that they do not rely on any predefined
infrastructure. In such networks, due to the mobility of nodes it
may happen that some nodes become temporarily unreachable.
Furthermore, the nodes forming the ad hoc network may be
heterogeneous in terms of capacities and battery life. If we
consider that a set of nodes within the ad hoc network have to
take part to a group-collaboration application and that one of

them has to centralize certain tasks and information, it would
be more judicious to choose the “most suitable” station to play
this role rather than doing a random choice. In order to
determine the “most suitable” station, a Serving Ability Degree
is associated to each station. This Serving Ability Degree is not
a static parameter. This parameter should take into account the
different factors that can impact application-, node- or network-
performances. It determines the ability of each node to host the
server functionality.

The Serving Ability Degree can either take into account
static factors, such as the processing power and node’s Random
Access Memory (RAM) capacity, or moving-in-time factors,
such as battery life or network topology. However, depending
on the tasks that the server may accomplish and/or on the
generated network overhead that can be induced if the server is
far from its clients, these factors do not have the same
importance in the server election. Hence, the formulations
“more adequate” and “most suitable” are application specific.
They depend on different factors and with different degrees.
For this reason, we do not propose a single formula to calculate
the Serving Ability Degree but a guideline towards doing this
calculation. Following this guidelines, we also give an example
illustrating the SAD calculation for a particular application.

A. SAD Calculation: Principal
There are several factors that are susceptible to have an

impact on the performances of the application, the network or
the node hosting the server. Among these, we can cite: node-
dependant factors such as the processing power, remaining
battery life or RAM capacity, and connectivity-dependant
factors such as the node position in the network or the link-
capacities. The performance impact of these factors depends on
the application behavior. For instance, the connectivity-
dependant factors have an important performance impact for
the applications generating important data exchanges between
the server and its clients. Furthermore, these factors do not
have the same impact degree. Some of them have greater
impact than others. Hence, for applications generating
important data exchanges between the server and its clients, the
remaining battery life is a more important factor to deal with in
the server election than the processing power for instance.

From this, we can say that the Serving Ability Degree
calculation depends on the application behavior. It is
application specific. For this reason we propose a generic SAD
calculation process. One can also note that the list of factors
presented above is not exhaustive. Indeed, depending on the
application behavior other factors can have a side effect on the
performances of the application, the network or the node
hosting the server. Proposing a generic SAD-calculation
process has also the advantage of being extensible to include
other factors.

Figure 3. Serving Ability Degree calculation algorithm.

From the application point of view, the performance factors
can be classified onto two categories:

• Necessary conditions: this category encompasses the
criteria that are essential to the ad hoc node in order to
run the server functionality. Such necessary conditions
are minimal processing power, minimal RAM
capacity, or multi-task capabilities for instance. Thus,
if one of these conditions is not met, the terminal is
declared not eligible to host the server functionality. In
this case, the SAD value corresponding to this terminal
will be set to the null value (cf. the else part in Figure
3).

• Performance aspects: this category allows
differentiating between eligible nodes (i.e. those that
satisfy all necessary conditions). Performance aspects
rely mainly on the node-dependant and connectivity-
dependant factors presented above. As these factors are
heterogeneous, we suggest using a method similar to
the Fuzzification procedure used in Fuzzy Logic [9] in
order to calculate the SAD value. The Fuzzification is
a procedure where a membership function is applied in
order to translate crisp input values to values belonging
to the same space, the fuzzy space. Once the
Fuzzification procedure applied and the crisp values
brought to the ‘fuzzy’ space, a normalized weighted
addition of the obtained ‘fuzzy’ values is realized in
order to compute the SAD value (cf. the if part in
Figure 3). Note that the weights correspond to the
performance-impact degree of the corresponding
factors. Hence, there are defined to match the impact,
of hosting the server functionality, on the application-,
the node-, and the network-performances. As this
impact depends on the application behavior, these
weights are application specific. Let us also remind,
that the word Fuzzification here relates only to the
transformation of the crisp values into values
belonging to the same space and not to the whole
process involved by Fuzzy logic.

If (all necessary conditions are verified) then
{

/* SAD calculation */

;)(
1 N

1 i

1
i

∑
∑ =

=

= xfa
a

SAD iiN

i
i

/* x being the crisp value, fi the Fuzzification
function, N the number of considered factors, and
ai the weight corresponding the ith factor*/

}
Else /* Case where the node can not run the server

SAD = 0;

Figure 4. The considered ad hoc network.

B. SAD Calculation: an Example
In order to illustrate the SAD calculation in ad hoc

networks, let us consider the example shown in Figure 4. The
concerned ad hoc network is composed of 10 nodes. We
assume that only the gray-numbered nodes are willing to
participate to the group-collaboration application. The
remaining nodes participate only to the connectivity. In our
example, we assume that the ad hoc network uses a proactive
routing protocol [1]. This allows each node to know its
distance (in number of hops) with all the other nodes in the ad
hoc network. The triplets (RAM capacity, processing power,
multi- or mono-task system) characterizing each ad hoc node
are also depicted in Figure 4.

The factors that we consider in this example are the
following:

• Necessary conditions: Multi-task machine, RAM
capacity ≥ 256Mo, and processing power ≥ 1Ghz.

• Performance criteria: In addition to the processing
power and the RAM capacity, the node hosting the
server may preferably have a central position in the
network. The central position degree of a node is given
by the mean distance between this node and all the
other nodes participating to the group-collaboration
application.

The weights assigned to each of these criteria are: a1 = 1 for
the RAM memory, a2= 4 for the processing power, and a3 = 2
for the topological criterion. One can note that the processing
power is the most important criterion followed by the
topological criterion and the RAM capacity respectively. The
Fuzzification functions fi(x) used in our example are illustrated
by Figure 5.

From the necessary conditions, the eligible nodes are nodes
1, 2 and 6. The SAD values calculation for these nodes gives:

• SAD(1) = 1*0.1+4*0.1+2*0.748 = 1.996

• SAD(2) = 1*0.4+4*0.55+2*0.82 = 4.24

• SAD(6) = 1*0.4+4*0.55+2*0.712 = 4.032

From this, we can remark that the topological criterion is
the one that allow differentiating nodes 2 and 6.

Figure 5. The fuzzification functions fi(x) used in our example.

IV. SITUATIONAL SERVER-ELECTION POLICY
In addition to the calculation of the Serving Ability Degree

for each node, the distributed server election process must take
into account the dynamic feature of ad hoc networks. By
distributed server election process we mean server election,
maintenance and replication when required. This entire
process, called Situational Sever Election Policy, relies on the
different situations that may occur in an ad hoc network. These
situations include:

• Node arrival and departure.

• Server replication due to network partitioning, node
departure/disappearance or when a node with a better
SAD exists in the network.

• Conflict resolution in presence of contending servers.

In order to implement the Situational Sever Election Policy,
we suggest using the Policy-based Networking paradigm. The
motivation behind this is twofold: simplicity and extensibility.
Indeed, as we will show in the following subsections the
Situational Server-Election Policy can be easily implemented
using policy-rules. Furthermore, the use of the Policy-based
Networking paradigm can allow the simple extension of our
proposal to incorporate supplemental application-specific
policy-rules in the server election process.

In the following subsections, we describe the different
situations that may occur in an ad hoc network and their impact
on the server election process. The resolution of each of these

0.1

1

256 1024 Mo

f1(x)

f2(x)

0.1

1

1 2 Ghz

0.1

1

1 6 Hops

f3(x)

situations is discussed and the corresponding policy-rules are
then specified using Ponder.

A. New Node Arrival
At the application launch, the terminal calculates its SAD

and then tries to detect the presence of a server. Server search
can be realized throughout a service discovery protocol such as
SDP (Service Discovery Protocol) or Salutation [10,11]. The
server search process lead to one of the following situations:

• There is no server currently running in the network;
however a server is starting by another node
(ServerStarted = false, ServerStarting = true).

• There is no server currently running in the network and
no one is trying to start the server (ServerStarted =
false, ServerStarting = false).

• A server already exists in the network (ServerStarted =
true).

These different situations are handled by the three policy-
rules depicted in Figure 6.

When starting a P-SEAN-enabled service, an ad hoc node
updates the state of the (NewArrival(s)) event. This update is
realised throughout the setting of the node.arrival.instant
temporal variable. Hence a node is considered to be a just-
arrived-node when its node.arrival.instant is recent (i.e. during
a certain amount of time after node.arrival.instant
initialization). Following this update, the NewArrival(s) event
triggers the three different policy-rules that allow handling the
situations identified above. The first policy-rule
(NodeJustArrived1) corresponds to the case where there is
neither a server started nor starting for the corresponding
application. This policy-rule allows a recently connected ad
hoc node to start the server functionality (s.StartServer()). Note
also that before launching the server, the corresponding node
has to check that the value associated to its SAD is not null.
Once the server launch started, the node immediately set the
s.ServerPossible() variable to true. Subsequently, none of the
other ad hoc nodes will start the server functionality when
beginning the same P-SEAN-enabled service. After server
launching, the state of the s.ServerPossible() and the
s.ServerExist() variables are switched to false and true,
respectively.

The second triggered policy-rule (NodeJustArrived2)
corresponds to the case where a server, corresponding to the P-
SEAN-enabled service, is currently starting (ServerStarting =
true). In this case, the application is switched to the sleep mode
(Time.wait(SleepPeriod)) for a certain period chosen in
accordance to the duration of the corresponding server starting
procedure. Then, it reinitialises the server search procedure
(s.arrival.instant = time.now()). Indeed, this latter action re-
trigger the three policy rules depicted in Figure 6. In the case
where the server search procedure is successful, i.e. there is a
server currently running in the network, the just-arrived-node
connects to the discovered server and sends it its SAD. This
behaviour is described by the third triggered policy-rule
(NodeJustArrived3).

Events :

event NewArrival (node) = (node.Arrival.instant () == time.now()) ;

Constraints :

constraint ServerStarting = ((ServiceDiscovery().ServerExist == false)
&& (ServiceDiscovery().ServerPossible = = true)) ;

constraint ServerStarted = (ServiceDiscovery().ServerExist == true) ;

Policy-rules :

inst oblig NodeJustArrived1 {
on NewArrival(s) ;
subject s =me ;
do (s.StartServer() || s.ServerPossible() = true)

-> (s.ServerExiste() = true || s.ServerPossible() = false);
when (s.SAD()<>0 && !ServerStarted && !ServerStarting);
}

inst oblig NodeJustArrived2 {
on NewArrival(s) ;
subject s =me ;
do Time.wait(SleepPeriod) -> s.Arrival.instant = time.now() ;
when (s.SAD()<>0 && ServerStarting) ;
}

inst oblig NodeJustArrived3 {
on NewArrival(s) ;
subject s =me ;
do s.ArrivalTo(ServiceDiscovery().server)

-> s.sendToServer(s.SAD()) ;
when (ServerStarted) ;
}

Figure 6. Policy-rules executed at the client side by a node recently joining
the application.

Finally, note that these three policy-rules can not generate
conflicting actions. Indeed, they can not be enforced at the
same time. In fact , the constraints, allowing confirming the
enforcement of the action-part of these policy-rules, can not be
verified at the same time. Note also that the constraint parts of
these policy-rules are complementary allowing handling all
possible cases.

B. Lifecycle of Elected Server
The server management procedure has to deal with multiple

situations during the server lifecycle. These situations
correspond to the following cases:

• The server has to be replaced as the node hosting the
server is living the network, closing the application or
as one of the other nodes participating to the P-SEAN-
enabled service has better characteristics to host the
server functionality (i.e. a higher SAD value).

• The server suddenly disappeared (server falling down).

• Two servers are running in the network (conflict). This
situation may happen in the case of the merge of two
ad hoc networks on which the same P-SEAN-enabled
service is running.

The following sub-sections present the policy-rules
allowing handling these situations.

1) Server Departure
There are two cases after which the server functionality has

to be moved from one node to another: (i) the case where the
node hosting this functionality is on the point of leaving the

network2 or closing the P-SEAN-enabled service, and (ii) the
case where another node participating to the distributed
application has better characteristics to host the server
functionality (i.e. a higher SAD value).

• In the former case, the server functionality should be
moved before the application or the network is left.
This operation is however not possible if all the
remaining participants have a null SAD value.

• In the latter case, there is a risk that several server-
switching occur. Indeed, each time a participant has a
better SAD, a server switching may happen. Thus, at
start-up for instance, an important number of
participants may join the P-SEAN-enabled service with
somewhat small temporal shifts. As these nodes have
different capabilities, it may happen that several
server-switching occur during this particular period.
Furthermore, as nodes can have their SAD evolving
during time3, it may happen that the SAD evolution
makes the node having the best-SAD also evolves
during time. Then, in order to control the number of
possible server switching, we make this procedure
possible only in predefined periods. We also prohibit
server switching if the difference between the two
concerned SAD is below a certain threshold. Hence,
periodically, the server checks the SAD of each
registered node. And for the best one, it first checks
that the ratio between the best-SAD and its SAD is
above a carefully chosen threshold. If yes, a server
switching is triggered.

Events :

event NodeIsLeaving(me) = (PartitionPredict() || me.Logout().begin) ;
event ServerIsNotBest = (Best.SAD()/me.SAD() > SADThresh) ;

Constraints :

constraint SubstitutExist = (Best.SAD <> Null) ;
constraint IamServer = (ServiceDiscovery().server.adress() = =

my.adress()) ;

Policy-rules :

inst oblig ServerReplacementToBeDone1 {
on NodeIsLeaving(s) ;
subject s =me ;
do s.sendTo(BestSubstitute(),Cmd(StartServer()))

-> StartCmd.sent =true ;
when (IamServer && SubstitutExist) ;
}

inst oblig ServerReplacementToBeDone2 {
on ServerIsNotBest ;
subject s =me ;
do s.sendTo(BestSubstitute(),Cmd(StartServer()))

-> (StartCmd.sent =true||
StartCmd.waitReport = true) ;

when (IamServer) ;
}

Figure 7. Policy-rules executed by the server when it initiates the switching
procedure.

2 The node can be sensed as being on the point of leaving the network if it is
starting the turn off procedure or when network partition is
detected/forecasted. This latter can be sensed through the use of one of the
existing server-based partition detection/prediction methods [2,3] for instance.
3 The calculation of the SAD can imply temporally evolving parameters such
as remaining battery life, connectivity constraints …

Policy-rules described in Figure 7 represent these
operations. Hence, the server has to be moved either when the
actual node hosting the server is not the best one
(ServerIsNotBest), or when this one is leaving the network or
the application (NodeIsLeaving(s)). In this situation the server
is moved towards its best substitute
(s.sendTo(BestSubstitute(),Cmd(StartServer())) if this one
exists (SubstitutExist). Note that, the server-move implies the
sending of the start server command and the replication of all
information needed by the started server in order to operate
properly. Afterwards, the closing server updates the
corresponding state variables ‘StartCmd.sent = true’ and
‘StartCmd.waitReport = true’. Thus, the actual node hosting
the server puts itself on standby waiting for a positive report
from the newly started server (RapportOK(BestSubstitute()).
Upon the reception of this report (cf. Figure 8), the leaving
server send a message to its clients in order to redirect them
towards the started server (ServerReplacementDone). In the
case where the positive report is not received, the server will
only send a message towards its clients informing them about
its destiny (ServerReplacementNotDone).

Events :

event ShouldLeave(me) = (PartitionImminence() || me.Logout().fin) ;
event ReportOK(node) = (node.Report.reveived() &&

(node.Report.status() = = “OK”)) ;

Constraints :

constraint IamServer = (ServiceDiscovery().server.adress() = =
my.adress()) ;

constraint SentStart = (StartCmd.sent = = true) ;
constraint WaitRepor = (StartCmd.WaitReport = = true) ;

Policy-rules :

inst oblig ServerReplacementDone {
on RapportOK(BestSubstitute()) ;
subject s =me ;
do (s.sendTo(All(),s.ServRedirct(BestSubstitute())||

WaitReport = false) -> s.sendTo(All(),s.ClientClose()) ;
when (IamServer && SentStart) ;
}

inst oblig ServerReplacementNotDone {
on NodeShouldLeave(s) ;
subject s =me ;
do s.sendTo(All(),s.ClientClose()) ;
when (IamServer && SentStart && WaitReport) ;
}

Figure 8. Policy-rules executed by the server when it concludes the
switching procedure.

For their part (cf. Figure 9), when a node not hosting the
server (!IamServer) is one the point of leaving the application
or the network (NodeIsLeaving(s)), it inform the server of its
intent (s.sendTo(Server,s.ClientClose())). Once triggered by
the corresponding (ClientClose) event, the server removes the
closed client from its substitute table, if this one is registered
within this table, (s.SubstituteTable.remove(CC.from())).

Events :

event NodeIsLeaving(me) = (PartitionPredict() || me.Logout().begin) ;
event ClientClose = (CC.reveived() && (IamServer)) ;

Constraints :

constraint IamServer = (ServiceDiscovery().server.adress() = =
my.adress()) ;

Policy-rules :

inst oblig DeconnexionClientReq {
on NodeIsLeaving(s) ;
subject s =me ;
do s.sendTo(Server,s.ClientClose()) ;
when (!IamServer) ;
}

inst oblig DeconnexionClientResp {
on ClientClose ;
subject s =me ;
do s.SubstituteTable.remove(CC.from()) ;
when (IamServer) ;
}

Figure 9. Policy-rules executed at the client side when this one is ready to
disconnect from the application.

Upon the reception of the start command (ReceivedStart),
the targeted node must answer it by the affirmative (cf. Figure
10). It then sends a positive report to the server
‘s.sendTo(Server,Report(“OK”))’ and starts the server
launching procedure as described in Figure 6. The other clients,
will then connect to the newly elected server by sending it their
SAD (s.connectTo(server)-> s.sendTo(server,s.SAD())). Thus,
the server replacement is done.

Events :

constraint ServerStarting = ((ServiceDiscovery().ServerExist== false)
&& (ServiceDiscovery().ServerPossible == true)) ;

Constraints :

event ReceivedServRedirect = (ServRedirect.reveived()) ;
event ReceivedStart = (StartCmd.reveived()) ;

Policy-rules :

inst oblig AcceptStartingServer {
on ReceivedStart ;
subject s =me ;
do s.sendTo(Server,Report(“OK”)) -> (s.ServerPossible() = true

|| s.StartServer()) -> s.ServerExist() = true;
}

inst oblig ConnectToNewServer {
on ReceivedServRedirect ;
subject s =me ;
do s.connectTo(ReceivedServRedirect.server)->

s.sendTo(server,s.SAD()) ;
}

Figure 10. Policy-rules executed in order to make effective the server
replacement

2) Server Disappearance
This case represents the case where the server disappears

suddenly (the node hosting the server fall down for instance).
In order to handle such situation, the clients monitor the server
throughout the use of the periodically-sent Keep Alive
messages (cf. Section II.B). Hence, when one of the clients
detects the server disappearance as it does not received several
Keep Alive messages; it triggers the node arrival procedure
described in Section V.A. This triggering is realized throughout

the re-initialization of the s.arrival.instant variable. The
policy-rules depicted in Figure 11 describe this case.

Events :

constraint ServRedirectNotReceived = (!ServRedirect.reveived()) ;

Constraints :

event ServerClose = (CC.reveived() && (CC.from() == Server.adress())) ;

Policy-rules :

inst oblig ReinitiateServerElectionProcedure {
on ServerClose ;
subject s =me ;
 do s.arrival.instant = time.now() ;
when ServRedirectNotReceived) ;
}

Figure 11. Policy-rules triggered by each client at the event of server
disappearance.

3) Server-Election Conflict-Resolution
In this section, we are concerned by the case where two or

more servers are present in the ad hoc network for serving the
clients of a same P-SEAN-enabled service. In this case, only
one server has to be maintained, the others have to be closed.
As for the election, the server that should be maintained is the
one having the largest SAD value. Server conflicts may happen
whilst two or several ad hoc networks, each of which
containing a server, are merged. Note that, conflict detection is
realised throughout periodic triggering of the server search
procedure (Service Discovery) by ‘each’ server.

Hence, when a server detects the existence of another
server, it sends it its SAD. Upon the reception of the SAD
originating from another server, the concurrent server interprets
this as a server close order. It will apply this order only in the
case where its SAD is smaller than the received one. In the case
where its SAD is larger than the received one, it replies back to
its concurrent server by sending its SAD. Then, the server who
has the smallest SAD will be closed. These situations are
described by the ServerTwin2 and ServerTwin3 policy-rules of
Figure 12. The ServerTwin1 policy-rule describes how the
concurrent-server detection is handled.

ServerTwin4 and ServerTwin5 policy-rules (Figure 12)
describe for their part the case where the SAD values of both
concurrent-servers are equals. In this case the arising question
is “which of the concurrent servers must be stopped?” This
situation is qualified as a contention situation. To resolve this
contention situation, we suggest using a Binary Exponential
Backoff (BEB) procedure. This procedure is currently used in
802.11 networks for contention resolution between concurrent
frames aiming to access the shared wireless medium at the
same time [12]. Hence, in our studied situation, when a
contending server discovers that its SAD is equal to the SAD
of its concurrent-server in the networks, it randomly chooses a
timer value between 0 and CW. It then waits until this timer is
reached. When this timer is reached, the server sends a server-
close order (s.sendCloseServer(CloseServerReceived()) to its
concurrent-server. The concurrent server receiving this order
has then to close. It may happen that both concurrent servers
send the server close order approximately at the same time. In
this case, the contention is not resolved. Then, for each of the
remaining concurrent servers, the CW value is doubled, a new

timer value is randomly chosen, and the contention resolution
procedure is triggered again (CW=CW*2 ->
Time.wait(rand()*CW)). This procedure is repeated until one
of the concurrent servers closes (cf. ServerTwin4 and
ServerTwin5 policy-rules).

Events :

event AnotherServer = (IamServer &&
ServiceDiscovery().server.adress() <> my.adress());

event ConcurantServer= (CloseServerReceived().status == true) ;

Constraints :

constraint SentSAD = (SAD.sent = = true) ;

Policy-rules :

inst oblig ServerTwin1 {
on AnotherServer ;
subject s =me ;
do s.sendCloseServer(ServiceDiscovery().server.adress(),

s.SAD()) -> SAD.sent = true ;
}

inst oblig ServerTwin2 {
on ConcurantServer ;
subject s =me ;
do s.sendTo(CloseServerReceived().server, ‘ClosingS’))->

s.sendTo(All(),s.ServRedirct(BestSubstitute())) ->
s.sendTo(All(),s.ClientClose()) ;

when (IamServer && CloseServerReceived().SAD > s.SAD()) ;
}

inst oblig ServerTwin3 {
on ConcurantServer ;
subject s =me ;
do s.sendCloseServer(CloseServerReceived().server,s.SAD()) ->

SAD.sent = true ;
when (IamServer && CloseServerReceived().SAD < s.SAD()) ;
}

inst oblig ServerTwin4 {
on ConcurantServer ;
subject s =me ;
do s.sendTo(CloseServerReceived().server, ‘ClosingS’))->

s.sendTo(All(),s.ServRedirct(BestSubstitute())) ->
s.sendTo(All(),s.ClientClose()) -> CW =10 ;

when (IamServer && CloseServerReceived().SAD == s.SAD() &&
!SentSAD) ;

}

inst oblig ServerTwin5 {
on ConcurantServer ;
subject s =me ;
do SAD.sent = false -> CW=CW*2 -> Time.wait(rand()*CW)->

s.sendCloseServer(CloseServerReceived().server,s.SAD()) ->
SAD.sent = true ;

when (IamServer && CloseServerReceived().SAD == s.SAD() &&
SentSAD) ;

}

Figure 12. Policy-rules for server-election conflict-resolution.

Note that, before leaving, each server may transfer required
state information to the lastly elected server to enable it to
operate properly.

Note also that the proposed policy-rules treat the case
where only two servers are competing in the network. Indeed,
as a situation where more than two servers are present in the ad
hoc network at the same time is not a common situation, we
suggest that the conflict-detecting server treat them
sequentially as long as this one is re-elected. If it is not re-
elected, the newly re-elected server will be responsible for
conflict detection and resolution.

Figure 13. P-SEAN-enabled service architecture.

V. POLICY-BASED SERVER ELECTION IN AD HOC
NETWORKS: ARCHITECTURE AND COPS-SEME PROTOCOL

After having presented in details the two main concepts
behind the P-SEAN framework, namely the Serving Ability
Degree and the Situational Server-Election Policy, let us now
discuss how these two concepts could be introduced in group-
collaboration applications. Indeed, a P-SEAN-enabled service
includes both the group-collaboration application and its
management plan (Figure 13). The management plan is
designed and implemented in such a way that it is transparent
to the group-collaboration application operations. It is also
reusable for any other group-collaboration application.

In the following subsections, a detailed description of both
the P-SEAN-enabled Service Architecture and the COPS
extension for Server Election and Maintenance Exchanges
(SEME) is given.

A. P-SEAN-enabled Service Architecture
From what we described earlier, P-SEAN is based on two

main concepts: The Situational Server-Election Policy
described in Section IV and the Serving Ability Degree
described in Section III. The former is not application-
dependent and is then unchanging. The latter is however
application-driven as we stated above. Indeed, depending on
the targeted service, this one would use specific sensors that
have to be included in the management plan. These sensors are
implemented as a set of plug-ins retrieving management
information (system characteristics) from the system and/or
monitoring (routing tables, remaining battery capacity …) it.
These sensors are triggered by the SAD-processing module
first at start-up and then periodically. When triggered, they
returns or compute the targeted value (remaining battery life,
mean distance to the other nodes participating to the P-SEAN-
enabled service …). The SAD-processing module is a generic
configurable module. Indeed, after retrieving the numerical
values returned by the corresponding sensors, it applies the
configured weights and the Fuzzification functions on them in
order to compute the SAD value. It then triggers the policy-
engine periodically in order to update the SAD value. This
latter will then be compared to all the SAD values stored
within the Policy Repository. Note that the Substitute-SADs
Store is also periodically updated. Hence, all the SAD values of
all the disconnected clients are removed. Also, all the
connected clients send periodically their SAD using COPS-

SEME. This allows updating the SAD values for connected
clients. Note that the COPS SEME daemon allows a P-SEAN
server to receive management information from its clients
(typically SAD values) and also to send policy decisions (such
as the client close, server redirection, server close orders)
towards its clients. In addition to the sensors defined for SAD
processing, other sensors are needed by the P-SEAN
management plan. These sensors are the sensors that help
detecting server departure (network partitioning
detection/forecasting, application or node closing …). Note that
these sensors are the one that triggers the policy-rules related to
server replacement (cf. Section IV.B.1).

The policy-engine takes all the decisions related to the
server lifecycle. Hence, as stated above, when it runs the
server, it may take policy-decisions (PDP) that have to be
enforced within the other nodes. The policy-engine is also a
policy enforcer (PEP). Indeed, whether the node is running the
server or not, the policy engine enforces the decisions that
concern the server starting or server replication. This is realized
throughout the actuators. These decisions can either be
received from a closing server or inferred from the Situational
Server-Election Policy. The former case corresponds to the
case where the old server has to be replicated (i.e. starting the
new server within the node and replicating the shared
information). The latter case corresponds to the case where the
concerned node detects that there is no server currently running
or starting in the network.

Note finally that in addition to the policy-rules defined by
the Situational Server-Election Policy, the P-SEAN-enabled
service may need other management policies. These policies
can be related to server election, such as server election based
on trust, per-cluster server election extension …, or not. These
policies have to be specified in Ponder and introduced in the
system throughout the Application-driven Policy Management
API.

B. A COPS extension for Server Election and Maintenance
Exchanges
According to the policy-rules defined by the Situational

Server-Election Policy (Section IV), many information
exchanges are realized between both the P-SEAN server and its
clients. In order to realize these exchanges, a lightweight COPS
protocol extension is proposed. The exchanges that have to be
handled are of four types:

• Node connection to the server.

• Connection monitoring throughout KA messages.

• Decisions related to server departure.

• Decisions related to server-conflict resolution.

As will be explained in the following subsections, these
situations can easily be implemented as COPS protocol
extension. This is what motivated the choice of this protocol
for P-SEAN policy-decisions and management information
exchanges.

1) Node Arrival
When the application is launched, the server search

procedure looks for a server which has already been elected
and started. In the case where a P-SEAN server exists, the P-
SEAN-enabled service starts as a client, connects to this server,
and it sends its SAD to it. This is realized through the use of
the connection procedure proposed in the COPS protocol. The
SAD value will be sent within the OPN message as a client
specific feature (i.e. as a named ClientSI object in the COPS
terminology [8]).

2) Connection Monitoring
As explained above (cf. Section IV.B.2), connection

monitoring is realized through the use of periodical Keep Alive
exchanges between the server and each of its clients as
proposed in COPS [8]. The use of these messages allows also
the exchange of periodical information such as the SAD values.
Indeed, as explained earlier, the SAD value is an evolving
parameter. Furthermore, this evolution can not be predicted as
it depends on multiple parameters. Each client has to send this
value towards the server in order for this latter to maintain a list
of possible substitutes. To do so, the clients use the KA
messages to send their SAD periodically towards the server.
Note that the server do not include any information within the
echo KA it sends in response. The KA message format is then
extended in order to encompass client specific feature (i.e. a
named ClientSI object), namely the SAD value. Indeed, it does
not contain such object in the legacy COPS protocol [8].

3) Server Departure Decisions
When a server has to be replaced by another participating

node, it first informs this node by sending an unsolicited
decision message (DEC). This decision message will
encompass a decision object meaning that the corresponding
node has to start the server functionality. It may also contain
server specific data (ClientSI Data). The elected substitute
acknowledges positively this decision by sending a report
message (RPT). This is realized after server starting.

The closing server sends a Client Close (CC) message to all
connected clients. Note also that in COPS, the PDP when
closing PEP sessions may use the optional PDP Redirect
Address Specific Object (PDPRedirAddr) to redirect its clients
(PEPs) to the alternate server. This optional feature is used in
P-SEAN in the case where a positive RPT is received by the
closing server.

4) Server Conflict Decisions
In the case where a server detects one contending server, it

connects to the contending server as a client in order to inform
it about the conflict situation. To do so, the conflict-detecting
server connects to the other servers using a slightly modified
procedure as the one presented in Section V.B.1.

Each COPS message belonging to a particular COPS
extension, identify the COPS extension to which it belongs
using a particular COPS object: the client-type. This object is
the unique identifier associated to a particular COPS extension.
COPS SEME, being a COPS extension, has a unique identifier
it uses for its normal operations. Then, in the case where a
server detects a contending server (abnormal operational
mode), it connects to it following the same procedure described

in Section V.B.1 but using a COPS extension identifier that is
different from the one used for normal COPS SEME
operations. This specific identifier is used solely for contention
resolution in COPS SEME. Hence, the contacted server will be
informed by the conflict. In all cases the contending server
replies by sending a Client Close message encompassing its
SAD value within the Error field contained in this COPS
message. As a consequence, three situations may happen:

• The contending server has a better SAD. In this case
the conflict-detecting server triggers a server
replacement procedure.

• The conflict-detecting server has a better SAD. In this
case the contending server triggers a server
replacement procedure.

• The SAD values of both servers are equal. In this case
both of them enter the BEB procedure and resend a
Client Close (CC) message after the timer expires.
Remind that the BEB procedure is repeated until one of
the two servers triggers a server replacement
procedure.

VI. CONCLUSION AND FUTURE WORK
Group-collaboration applications are client-server

applications where any participating entity can centralize the
shared information and play the role of server. This kind of
applications is widely used in both wired and wireless
networks. Among them, numerous distributed management and
control applications proposed for ad hoc networks use this
mode. All these proposals argue on the necessity to realize an
appropriate server election regarding to the performances of the
network, the wireless station or the application. Indeed, it is
clear that an inadequate choice of the entity running the server
functionality can have a side effect on the network-, the
application-, or the wireless station-performances.

In this paper we proposed a complete framework for
Policy-based Server Election in Ad hoc Networks (P-SEAN).
We identified the main concepts upon which this framework
should be built, namely the Serving Ability Degree and the
Situational Server-Election Policy, and we formalized them.
Hence, the proposed framework implements all the situations
that may happen for server election and maintenance in ad hoc
networks (Situational Server-Election Policy). These situations
have been specified as policy-rules thanks to the widely used
Ponder policy specification language. Our framework also
bases the election and maintenance processes on factors such
as connectivity, processing power, RAM capacity, remaining
battery life, etc. The Serving Ability Degree of each
participating entity is hence processed using these factors. As it
may depend on application-specific criteria, we do not propose
a single formula for the processing of the Serving Ability
Degree but a guideline towards doing this processing. Note that
this one is performed using a method inspired from the
Fuzzification procedure (Fuzzy Logic). Finally, in order to
realize the Server Election and Maintenance Exchanges, a
lightweight extension of the COPS protocol has also been
proposed.

Note that our framework is generic and can be used with
any group-collaboration application. It is also independent
from the application implementation. One of the main features
of the proposed framework is its extensibility. Indeed, as we
used the Policy-based Networking paradigm, we made our
framework capable of incorporating any additional application-
specific criteria whether this one are specified as policies.
Hence, the server election process may encompass policy-rules
related to trust, to cluster/zone based election, or others.

Our framework uses several timers (KA timers, Contention
Windows, Sleep Periods …). These timers have to be tuned
adequately. The target of our future work is to made practical
experiments and simulations in order to adequately adjust these
timers. A complete simulation study aiming to demonstrate the
robustness degree of such framework regarding to node
velocities and mobility models will also be the subject of our
future work.

REFERENCES
[1] C.E. Perkins (Ed.), Ad Hoc Networking, Addison-Wesley, December

2000.
[2] K. H. Wang, and B. Li, “Group mobility and partition forecasting in

wireless ad-hoc networks,” in Proceedings of IEEE International
Conference on Communications (ICC 2002), Vol. 2, pages 1017–1021,
April 2002.

[3] H. Ritter, R. Winter, J. Schiller, “A Partition Detection System for
Mobile Ad-Hoc Networks,” First IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks
(SECON 2004), October 2004.

[4] K. S. Phanse, L. A. DaSilva, S. F. Midkiff, “Design and demonstration
of policy-based management in a multi-hop ad hoc network,” Elsevier
Ad hoc Networks Journal, Vol. 3, N° 3, pp. 389-401, May 2005.

[5] D. C. Verma, Policy-Based Networking–Architecture and Algorithms,
New Riders Publishing, November 2000.

[6] N. Damianou, N. Dulay, E. Lupu and M. Sloman, “The PONDER Policy
Specification Language,” Workshop on Policies for Distributed Systems
and Networks (Policy’01), January 2001.

[7] N. Damianou, N. Dulay, E. Lupu et M. Sloman, “Ponder: A Language
for Specifying Security and Management Policies for Distributed
Systems, The Language Specification Version 2.3,” Imperial College
Research Report DoC 2000/1, Octobre 2000.

[8] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Raja et A. Sastry, “The
COPS (Common Open Policy Service) Protocol”, RFC 2748, Janvier
2000.

[9] L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex
Systems and Decision Processes,” IEEE Trans. On Systems, Man and
Cybernetics, 1973, 28-44.

[10] E. Guttman, C. Perkins, J. Veizades et M. Day, “Service Location
Protocol, Version 2,” RFC 2608, Juin 1999.

[11] The Salutation Consortium, http ://www.salutation.org/.
[12] LAN MAN Standards of the IEEE Computer Society,“Wireless LAN

medium access control (MAC) and physical layer (PHY) specification,”
IEEE Standard 802.11, 1997.

