1117,

Efficient Data-Centric Storage in Sensor Networks with
Lightweight Routing and Address allocation algorithm

Ghazi AL SUKKAR Hossam AFIFI Sidi-Mohammed Senouci
Institut National des Télécommunications Institut National des Télécommunications France Telecom R&D
Evry-France Evry-France Lannion-France
ghazial_sukkar@int-evry fr hossam.afifi@int-evry.fr sidimohammed.senouci@francetelecom.com
Abstract: which sensor is responsible for that name, and then stores the

In this paper we propose two algorithms for efficient data-
centric storage in wireless sensor networks without the
support of any location information system. These algorithms
are intended to be applied in environments with large number
of sensors where the scalability of the network has great
issue. During the first algorithm, each sensor obtains a unique
temporary address according to its current relative location in
the network. The second algorithm is used to route data from
one sensor to another, this routing algorithm only depends on
the sensor’s neighborhood, i.e. in order to implement the
routing table each sensor needs only to exchange local
information with its first hop neighbors. The forwarding
process used in this algorithm resembles the one found in
Pastry peer-to-peer protocol.

Our simulation results show that these algorithms scale well
with network size and density.

Keywords: Sensor networks, Data-centric storage, Routing,
Distributed Hash tables, Dynamic Address Allocation.

1. Introduction:

Sensor networks are expected to play an important role in
future communications, where they will find wide application
scenarios in daily life events. Large-scale events such as
disaster relief or rescue efforts are highly dependent on
effective communication capabilities.

Wireless sensor networks facilitate monitoring and
controlling of physical environments from remote locations
with better accuracy. A wireless sensor network consists of a
large number of miniature sensors, mostly with scarce
resources, (e.g. memory, communication range, processing
power, and most importantly, battery power), which collect
and disseminate environmental data.

A wide range of application scenarios are proposed in the
literature for wireless sensor networks [1, 2, 3, 4], examples
of such applications are: safety monitoring, real-time
pollution monitoring, wildlife monitoring, military sensing
and tracking, etc.

For disseminating and storing the sensed data, three methods
are available in the literature [5, 6]:

1. Local storage: here, each sensor keeps the data it
senses locally. To retrieve data, a query must be flooded
through the network, causing sensors with data relevant to the
query to send data back to the base station.

2. External storage: in this method, data is sent to-the
base station without waiting for a user to send a query. While

external storage avoids flooding the network with a query, it-

may waste energy when data that the user is not interested in

is sent to the base station.

3. Data-centric storage: in data-centric storage, events

are named, and sensors cooperate locally to detect named
i events. When a sensor detects a named event, it determines

data at that sensor. Which sensor is responsible for storing 2
type of data is typically determined by taking a hash of the
name, and mapping that hash onto a sensor in the network,
When a user wishes to query the network, he can send the
query only to the sensor responsible for the data relevant to
the query. Note that in this approach, queries do not need to
be flooded through the network, nor does data that the user
does not ask about get sent to the base station. Additionally,
the query may be partially processed at the sensors storing the
data, allowing a small message consisting of aggregated data
to be sent to the base station instead of all individual records
relevant to the query.

Data-centric storage provides a (key, value) based associative
memory, in a way similar to the distributed hash table (DHT)
systems designed for the internet use, like Pastry [7], CAN
[8], Chord [9], and Tapestry {10] where nodes communicate
in an application level fashion through the formation an
overlay network between them.

In data-centric storage, events are named with keys and both
the storage of an event and its retrieval are performed using
these keys. Thus the two operations available in data-centric
storage based sensor network are:

Put(k,v): which stores the observed data v according to the
key %.

Get(k): retrieves whatever stored value associated with key k. |

As shown by [6] data-centric storage is preferable in cases
where (a) the sensor network size is large, (b) there are many
detected events and not all event types are queried. In this
paper we will concentrate on this method, since it seems to be
the most efficient way of data dissemination and storage in
sensor networks.

Such sensor networks are supposed to be unsupported by an
underlying IP infrastructure and independent of the IP-like
hierarchical addressing.

In this paper, we present two correlated algorithms for
efficient data-centric in sensor networks. They are completely
distributed algorithms without any centralized control, which
result in all sensors have identical responsibilities.

In the first algorithm a sensor is assigned a unique address
according to its relative location in the network, the address
assignment mechanism works in a distributed manner where
address conflict is avoided without the need to flood the
whole network. Sensors change their addresses as they move,
so that their addresses have a topological meaning,

The second algorithm is the routing algorithm which is very
simple and depends only on the node’s first hop neighbors,
and the forwarding process resembles to some degree the one
found in Pastry peer-to-peer protocol [7].

I1.18.

The rest of this paper is organized as follows. In section II we
describe the related work; the framework design requirements
are discussed in section HI. In section IV we describe the
address allocation procedure, section V describes the routing
procedure, data centric storage mechanism is described in
section VI, topology dynamism and address reassignment are
explained in section VII, performance analysis and
comparison are treated in section VIII Finally we conclude
with section IX.

II. Related Work:

Ratnasamy et al. [5] were the primaries who introduce the
concept of data-centric storage in sensor networks, as well as
they describe the simpler concepts of local and external
storage. Their work continued in [6], where they describe
GHT, a data-centric storage system for sensor networks built
on top of GPSR{11]. Their approach depends on the use of
geographical information where they assumed that each node
knows its location coordinates using some technologies (e.g.
GPS), although this works well, however, location
information is not always available, current methods of
determining the location information consume much energy
and may not be possible in many sensor network scenarios.
Also GPSR warks best when geographic locality accurately
represents network topology. For many sensor networks,
geographic locality may differ significantly from network
topology i.e. physical obstacles can easily prevent two
geographically close nodes from communicating directly,
causing them to be far apart in the network topology.

Taking this in consideration, a number of new routing
protocols where invented, that try to estimate node
coordinates in a relative way without the assistant of any
positioning system, examples of these protocols NoGeo [12]
and GEM [13]. NoGeo proposed an algorithm for performing
node to node routing with only neighbor information, without
geographic location information. Where a virtual coordinate
system is built by having nodes on the perimeter of the
network determine their positions relative to each other. They
then use an iterative relaxation algorithm for other nodes to
determine their coordinates. Once the coordinate system is
built, they use greedy forwarding like the one in [11] to
perform all the routing. This approach has the advantage that
node failures and node mobility are more easily dealt with,
also this approach is interesting, in that it achieves the O(1)
complexity of geographical routing. However, there is a
relatively large set-up overhtad for the perimeter nodes to
find their relative positions, and to perform several iterations
of the relaxation algorithm. Also the scheme will only work
on certain types of graphs (typically unit-disk like graphs).

GEM constructed a labeled graph that embedded in the .

original network topology in a distributed fashion. In that
graph, each node is given a label that encodes its position in
the original network topology.

To do that they developed two algorithms, with the first one
VPCS, they embedded a ringed tree into the network
topology, and labeled the sensors in such a manner as to
create a virtual polar coordinate space. They have also
developed VPCR, a routing algorithm where each node keeps
state only about its immediate neighbors, and requires no
geographical information.

While they provide a simple routing algorithm within the
virtual polar coordinate space, the overhead to implement this
virtual coordinate is considered to by high.

Where in order to use the routing algorithm efficiently they
resort to align the virtual space with the network topology
using two techniques, in the first scheme called the Naive
scheme, sensors are required to fine the distances between
themselves and their neighbors by observing the radio signal
attenuation or by measuring the arrival time difference
between radio and ultrasonic pulses. Even doing this will not
guarantee a good performance, since small errors in distance
estimation prevent a good aligning in the virtual space.

In the second scheme each sensor calculates its position from
knowing its distance in number of hops to at least three
reference nodes including the root node, and the distances
between these references.

To calculate these distances, they build a spanning tree from
each of the reference nodes. Every node then knows its
distance in network hops from each reference node. One of
the reference nodes can then send the distance between itself
and the other reference node to the root node. The root node
then floods the network with the distances in network hops
between itself and the two other reference nodes.

Since the distances are measured in number of hops, the
resulting position estimation are not highly accurate, to solve
this problem they resort to another method called centers of
mass which result in a relatively high overhead.

Several protocols for wircless sensor mnetworks were
proposed, which can be classified under the Local storage
method, such as LEACH[14] and Minimum Cost
Forwarding[15].

Moreover, Directed diffusion(16] and TAG[17] are more
advanced forms of external storage.

II1. Framework design requirements;

Topology dynamisms, scare resources, failure of nodes, and
scalability of the network are challenging issues in any design
for a data-centric storage system in sensor networks. Thus a
good framework design for data-centric storage should
guarantee the following requirements [6]:

= Persistency: a (k v) pair stored in the system must
remain available to queriers, despite sensor node failures and
changes in the sensor network topology.

= Consistency: a query for k must be routed cormrectly to
a node where (k, v) pairs are currently stored; if this node
changes (e.g, to maintain persistence after a node failure),
queries and stored data must choose a new node consistently

= Scaling with network size: as the number of nodes in
the system increases, the system's total storage capacity
should increase, and the communication cost of the system
should not grow unduly. Nor should any node become a
concentration point of communication.)
As we will observe, our proposed algorithms try to pursue
these requirements in an efficient way.
In our algorithms a sensor is dynamically assigned a unique
address which changes with its movement to reflect sensor’s
location in the network, this address is used to simplify
routing in the network.
To join the network, a sensor establishes a physical:
connection to at least one node already in the network and:
requests an address. The neighbor node(s) answer(s) with an’
address. As a sensor moves, it requests and receives new:
addresses from its new neighbors.

11.19.

The forwarding is done in a way similar to the one done in
Pastry {7], one hop at a time, where each node forwards the
message to its immediate neighbor who gets the message as
close as possible to the destination.

IV. Address Allocation Algorithm:

This algorithm enables the sensors to allocate addresses in a
local way i.e. without the need to contact faraway nodes in
the network or flooding the whole network, where at any
given time; each node manages a range of addresses including
its own address. Node addresses are dynamically assigned
depending on the node’s current position in the network.
More specifically, the addresses are organized as a tree. We
call this the address 1ree, see Fig. 1.

To understand this addressing assignment mechanism, let us
assume that the addresses are d digits with base 10 numbers,

so addresses will be in this form Agq, . . ., Ag , Where
4, € {0,1,.,.,9} . As we will notice, the choice of the base B

will determine the maximum number of children a node could
have, in our example here the maximum number of children
is 9.

The base station will be a logical choice to play the role of
the first node which will form the network (since it is the
most stable node), so it will take the all zeroes address 00. .
.0, we call it the root node, as sensor nodes arrive' in the
neighborhood of the root (i.e. they are in its transmission
range), they contact it to obtain an address (call these nodes
level 1 nodes). The root node control the first digit (leftmost
digit) of the address, where it give the first arriving node
address 100...0, the second arriving node 200...0 and so on
up to 900...0. These first level nodes control the second digit

(from left) in the address, so when nodes connect to any of -

these nodes and ask for address, they fix the first digit as their
address and change the second digit according to node
arriving sequence. For example if a node arrive and it is in the
neighborhood of the node with address 100...0 and ask this
node for an address, then node 100...0 will give it the address
110...0, the second node ask 100...0 for an address will take
120...0 as an address and so on (we call node 100...0 parent
of nodes 110...0, 120...0,...,190...0 and thus they are its
children),

These second level nodes take control of the third digit and so
on. Fig. 1 show an example of an address tree with three
digits addresses, for d = 3 digits, the entire address space can
be represented by xxx, where x € {0, 1,..., 9}, nodes in level /
subtree are the children of the node in level /-1. We call the
last level nodes in the tree leaves.

000 Root node
l
T I
1o 20 300 Lee node 80
" 1) 1% Love £ noder LY 20 %0
! | I | | I
oo . 1% ke BT . 918 [

Fig. 1. Address tree with three digits decimal address space.

I T
Assume nodes arrive in the network one by one.

These leaves do not take control of addresses since address
space reaches its limit.

Address tree illustrates how addresses are allocated; it does
not represent the actual network topology although address of
a node depends on its current position in the network. Fig. 2
shows an example of a network topology which uses this
algorithm.

When a new node i arrives in the network, it receives an
address R; (call it temporary address) which will be used for
routing. A new node in the network receives the temporary
address from one of its neighbors (we call this neighbor the
parent neighbor P;). We assume the existence of some
bootstrap mechanism which allows new nodes to identify
their neighbors in the network.

This mechanism results in a list containing information about

all neighbors. Let N, = {nl,nz,...,nq}be the set of ¢ nodes in

the neighborhood of node i (ifi its transmission region). The
neighborhood list L; of node / is defined as

Li={["1‘Rnl'cnl]‘["2’kn2’an) """ [nq'an 'qu)]

where C, = {Rc R, ... R, }is the children list managed
J 1 2} Em

by node nj, an e N,.

The neighborhood list is used to determine which existing
node in the neighborhood will give a temporary address to the
arriving node. Several factors must be taken into account.

We apply the following criteria to assign one temporary
address to a new node. Using this criterion the joining node
selects, among a set of candidate neighbors, the node which
will be the parent neighbor of it. This node will be the one
with the least level i.e. the nearer to the root. If two or more
nodes have the same level then it chooses the node with the
least number of children, if a gain two or more nodes satisfy
this condition then it will choose the one with the least
address,

After the new arriving node chooses the parent neighbor it
asks that parent for a temporary address which will be
assigned according to our address allocation algorithm, we
said that an association relationship established between the
two nodes, In Fig. 2 this association relationship is
represented by continuous thick lines, where the dotted thin
lines represent the neighborhood relationship.

V. Routing Algorithm:

The previously mention address allocation algorithm
simplifies the routing procedure, as we will see. Where
routing is performed in a hop by hop basis.

Having obtained its temporary address, the new node / also
learns the temporary addresses of its immediate neighbors,
This neighborhood information will compose its routing table.

In this algorithm a node routes a message by simply
forwarding to the neighbor whose address is the closest to the
searched temporary address of the destination until the
messages reaches the destination. This forwarding procedure
resembles the forwarding procedure in Pastry [7]; where the
message is forwarded to a node from the routing table that has
a temporary address with longer shared prefix with the
temporary address of the destination.

11.20.

To 311

Fig. 2. An example of network topology with 17 nodes and three digits
address space. Numbers in the circles are nodes identifiers and at the same
represent the sequence of nodes arrival at the network; numbers beside the

circles are nodes addresses.

If the node can not find in its routing table such a node that
have a longer shared prefix matching, it simply forward the
message to its parent an so on until the message reach its
destination.

Fig. 2 shows an example of how the routing algorithm- works,
here node 7 with Ry = 220 want to sent for the destination 14
with Ry4 = 311, Node 7 find in its routing table that node 16
has a temporary address that matches the destination
temporary address in the first digit, so it forwards the message
to this neighbor, in its turn node 16 forwards this message to
node 15 which is its parent neighbor since it does not have in
it routing table any node that has a longer prefix matching
with the destination node’s temporary address. Node 15
forward the message to node 11 which has a temporary
address that matches the destination’s temporary address in
two digits. Finally, this node forwards the message to node 14
which is the destination node.

Also Fig. 2, illustrates another routing example, where the
source is node 7 and the destination is node 4. As you can
note from this example, the message forwarded back to the
root node 0 which in its tern forward it to the destination.

The arrival of a new node affects only a limited number of
existing nodes (nodes that are in its direct transmission
region). The number of neighbors and, consequently, the
signaling overhead, depend only on the node’s transmission
range and are independent of the total number of nodes in the
system. Furthermore, a small amount of information suffices
to implement this routing algorithm. Each node only stores
information about itself and about its neighbors.

V1. Data-centric storage mechanism:

As we will see, implement these algorithms in sensor
nf:tworks will simplify applying data-centric storage in these
kinds of networks. So here we will explain how this is done.

1. Event Storing Procedure Put(k,v):

This operation is used to identify the node which will be
responsible for storing a sensed named event v. We will
assume the existence of previously known naming system,
which maps each defined event to a key 4.

By using any well-known functions like SHA-1 [18], the
sensor / which detect the event v, hashes the key of the sensed
event, and obtains an m-bit number. This number is then
translated using certain function into another number which
falls in the temporary address space, this number R, is used to

find the sensor which will be responsible of storing the event
data v, as the following.

Sensor i/ forwards a registration message using R, as a
destination address, by applying the routing procedure as in
section V. This request will be forwarded until it reaches the
sensor having temporary address that has the longest prefix
matching with R.

So this sensor is the one responsible for storing the sensed
data event v.

2. Event lookup Procedure Get(k):

The interested node s apply the same globally know hash
function on the events key, so it well get a temporary address
Ry, this temporary address is the one used to find the sensor
which is responsible for storing this event value v.

To find this sensor, the node s forwards a Jookup message
using Ry as a destination address, applying the routing
algorithm in section V, this message will be forwarded until it
reaches the sensor with the longest prefix matching with R,
this sensor is the final destination. So it is our target, which
will respond with the value v corresponding to the key .

VII. Topology dynamism and Address
Reassignment:

Our algorithms have to deal with dynamic topology changes
caused by sensors voluntarily join or leave the network due to
sensors mobility, or by sensors failures due to energy
depletion (though some may fall prey to a hostile
environment). When a sensor / departure, the system must
guarantee the stability of the routing protocol, also the
persistency and the consistency requirements of the
framework have to be guaranteed (see section III),

A, Persistency:

To ensure the persistency of the system in case of dynamic
topology changes, the sensed event data v has to be stored in
multiple locations. These locations have to be chosen in an
efficient way.

We suggest here to store v in different branches of the address
tree, so in case of a complete distortion in the first level
subtree, the data v is guaranteed to be available in another
subtree.

To do that we have to modify the hash function in such away
to give use multiple numbers which will be used to store the
data in multiple locations. One simple way to do that is to
modify the left most digit in the number which result from
applying the original hash function as in section V1.1:

B. Consistency:
To ensure consistency we have to deal with sensor movement
and sensor sudden failure.

Dealing with sensor movement:

We consider that before leaving its location, a sensor
explicitly hands over its temporary address R; its
neighborhood set N;, neighborhood list L;, its children list C,
and the associated mapping information database to its parent
neighbor'.

1 R . .
We assume the existence of a mechanism that allows a node to determine
when it is leaving its location.

IL.21.

In this situation we have to deal with one of the following two
cases:

Case 1: The leaving sensor / is a leaf node, Fig. 3, shows an
example, where node 9 leaves the network (or changes its
position), in this case, the node mobility will cause no impact
on the organization of the topology, the only process that will
take place is the handover of the mapping information
database, to the parent P;, and the temporary address of the
leaving node will be available again for its parent to be
assigned to another node.

110

Fr
311 131@\# t /,\Km
OBy e @ion | /Sy
D N A N12
(&) a9 |

Fig. 3. Leaf node 9, and node 1 leaves (or changes its position).

Case 2: The leaving node is not a leaf node; it could be any
node in any leve! of the address tree. So the system must
guarantee the persistency and the consistency after a node
departure. In Fig. 3, node 1 leaves the network, the parent
neighbor is node 0, and it leaves behind four descendents; its
two children, node 2 and 5, and the children of node 2; which
are node 4 and 9.
Based on the received neighborhood list L; of the depart node
i, its parent neighbor P; will face one of the following:

» The children of the leaved node / are also neighbors
of the parent node P; of i i.e.C, < N, in this case the parent

neighbor establishes an association relationship with these
node, telling them that it now play the role of their previous
parent / and no other operation will be required. Thus any
messaged directed to (through) or from these children will be
processed by the parent neighbor of the previously departed
node. We call this a smooth reassignment.

= All or some children of the leaved node / are note
neighbors of the parent node P; of i i.e. C, ZNp» in this case,

the parent neighbor P; try to find the set S of the children
nodes that are also neighbors to it self, i.e. § = Cin Ny

if it is not empty § # ¢ , then the parent neighbor establishes

an association relationship with these node as in the previous
case, so these node will keep their temporary address.

For the rest of children f = C, - § that are note neighbors of P;,

after detecting the absence of their parent neighbor i/, they will
try to rejoin the network as they are a new arriving nodes, so
they will ask another node with a higher level for a new
temporary address and establish an association relationship
with it, and inform all of its children nodes about the address
change, so these nodes will change there addresses according
to the new address of their parent, these children will do the
same process, this process will repeated recursively until the
change include all the nodes in their subfree.

If a node from set f'could not find a node with higher level to
establish an association relationship with it, this node will try

to establish an association relationship with nodes in the same
level as its current one or even with lower level.

This node can not be one from the subtree of the leaved node,
in case that they still hold the previous temporary address.

At the same time this node will send a message for all of its
children telling them to rejoin the network, in this case each
one of these children will try in its turn to apply the same
previous mechanism which will recursively repeated. See Fig.
4.

Fig. 4. This figure shows the network after node | leaved the network.

Taking this case in consideration, each time that a new node
arrives in a location that has been previously occupied by
another node, the parent neighbor verifies if the new node is
appropriate to receive the previous handed over temporary
address and the associated mapping information database.

For doing this, the parent neighbor compares the
neighborhood set sent by the previous mobile node, before
it’s moving, with the one for the new arrived node. If the new
node is also a neighbor of the children of the previously
leaved node i.e. if S cN,,, . the parent neighbor assigns

the temporary address and the mapping information database
of the previously leaved node to the new node. However, if
the new node can not satisfy this condition a new temporary
address will be attributed to it, according to the described
joining procedure,

Dealing with sensor sudden failure:

The mechanism to deal with sensor sudden failure is same as
the one used in sensor movement. The difference here is that
in case of sensor sudden failure, its neighborhood set N,
neighborhood list L;, and its children list C; of the failed
sensor / are not available for its parent neighbor. In this case
its parent neighbor and its children will depend on the
received hello messages and the routing table, to decide if
they are still neighbors, so they could apply the same
mechanism in the case of sensor movement. This will result
just in a higher handover time than the case of sensor
movement, since discovering sensor sudden failure, and the
dependency on the hello messages, will take longer time,

VIII. Performance Comparison and Analysis:

The scalability of these algorithms comes from the following
features:

= Size of the routing table: where each sensor has a
routing table of size O(g), where ¢ is the number of
immediate neighbors of the sensor node.

= Signaling traffic needed to implement and maintain
the routing table: the routing table entries are the immediate
neighbors, and the only signaling traffic needed is the hello

11.22,

signals between neighbors that used to inform that the sensor
is still alive and still in its position.

» The arrival of a new sensor and sensor movement
affects only a limited number of existing nodes (nodes that
are in its direct transmission region). Thus the signaling
overhead resulting from this action will be small and local.

* The cost of event storing is O(1), since the only thing
that a source needs to store event data is to route them to the
destination using the number resulting from hashing the event
key as a destination address.

* The cost of event lookup is also Of7), since the source
needs only to route the lookup message to the temporary
address resulting from applying the event’s key to the
globally known hash function.

Our algorithms are almost similar to those found at GEM
[13], but they outperform them in the following aspects:

= There is no need to align the virtual space with the -

network topology, which results in a high processing and
communication overhead as we discussed before in section II.

* There is no need to assign the node level in the
spanning tree with its label explicitly, since in our algorithms
the node level is included implicitly in its label.

= No need to know the size (number of sensors) in each
subtree of the spanning tree in order to distribute the polar
coordinate space between nodes in a way proportional to this
size.

* A new joining sensor in GEM, will affect a number of
sensors already exist in the networks. In order to do this, the
new joining node first chooses a parent from its set of
neighbors. The parent assigns the new node a level equal to
its own plus one. The parent then assigns the new node an
angle range by first taking away part of the angle range from
one of its other children. That child must take away that angle
range from its child that it is assigned to as well. Thus, this
change recurs down the tree to a leaf node.

* GEM use a two hops neighborhood information,
while in our algorithm we use only one hop neighborhood
information, these will reduce the amount of memory uses
since it is one of scare resources in sensor networks.

* Node failure in GEM may result in a discontinuity in
the angle range of some nodes, which makes the storage of
neighbor angle range more complex.

IX., Conclusion:

Two algorithms were proposed for efficient data-centric
storage in wireless sensor networks without the support of
any location information system.

A small amount of information suffices to implement the
routing table, ie., low signaling overhead is generated (only
local neighborhood communication), Thus the routing table
size is O(q), where g is the number of immediate neighbors of
the node.

We expect these algorithms to be applied in environments
with large number of sensors where the scalability of the
network has great issue.

Our future study will include sudden node failures and a
treatment of certain network issues, like network separation,
networks merging. And a study of this protocol performance
through simulation. We are now in the state of implementing
this protocol in NS2,

REFERENCES:

[1] D. Estrin, L. Girod, G. Pottie, M. Srivastava, Instrumenting the world
with wireless sensor networks, International Conference on Acoustics,
Speech and Signal Processing, Salt Lake City, UT, May 2001.

[2] J. Warrior, Smart sensor networks of the future, Sensors Magazine,
March 1997

(3] G. . Pottie, W. J. Kaiser, Wireless integrated network sensors,
Communications of the ACM 43 (5) 2000, pp. 551-558.

[4] Cerpa, et al., Habiatat Monitoring: Application Driver for wireless
communication technology, Workshop on Data Communications, ACM
SIGCOMM, April 2001, .

[5] S. Shenker, S. Ratnasamy, B. Karp, R, Govindan, and D. Estrin, Data-
centric storage in sensomets, Proc. ACM SIGCOMM Workshop on Hot
Topics In Networks, 2002,

[6] S.Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S,
Shenker. GHT: a geographic hash table for data-centric storage,
Proceedings of the ACM Workshop on Sensor Networks and
Applications, pp. 78--87, Atlanta, Georgia, USA:ACM, September
2002.

[7] Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in Proceedings of the
Middleware, 2001,

[8] Sylvia Ramasamy, Paul Francis, Mark Handley, Richard Kamp, Scott
Shenker. “A Scalable Content-Addressable Network,” In Proceedings
of the ACM SIGCOMM, 2001.

[9] Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
“Chord: A Scalable Peer-topeer Lookup Service for Internet
Applications,” ACM SIGCOMM 2001, San Diego, CA, August 2001.

{10] Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” JEEE Journal on Selected Areas in communications, vol.
22, no. 1, pp. 41-53, January 2004,

[11] Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for
wireless networks, Proceedings of the 6th annual intemational
conference on Mobile computing and networking, Boston,
Massachusetts, United States, 2000, pages 243-254.

[12] Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and L. Stoica,
“Geographic routing without location information,” in ACM MobiCom,
2003,

[13} James Newsome and Dawn Song, “Gem: graph embedding for routing
and data-centric storage in sensor networks without geographic
information,” in SenSys ‘03: Proceedings of the Ist international
conference on Embedded networked sensor systems, New York, NY,
USA, 2003, pp. 76-88, ACM Press,

[14] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Encrgy-
efficient communication protocol for wireless microsensor networks,
Proceedings of the 33rd Annual Hawaii International Conference on
system sciences, 2000,

[15] E. Ye, A. Chen, S. Lu, and L. Zhang. A scalable solution to minimum
cost forwarding in large sensor network, in Tenth Intemational
Conference on Computer Communications and Networks, 2001, pp.
304-309.

[16] Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
scalable and robust communication paradigm for sensor networks.
pages 5667, Proceedings of the 6th annual international conference on
Mobile computing and networking, Boston, Massachusetts, United
States, 2000, pp. 56 - 67.

[17] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny
aggregation service for ad hoc sensor networks, In Proc. Sth Annual
Symposium on Operating Systems Design and Implementation (OSDI),
2002, pages 131-146.

[18] “FIPS 180-1, Secure Hash Standard.” U.S. Department of
commerce/NIST, National Technical Information Service, Springfield,
Apr. 1995,

