
Emulating Loss and Delay for AD HOC Networks
Alaa Seddik-Ghaleb

Networks and Multimedia
Systems Research Group (LRSM)

Institut d’Informatique d’Entreprise (IIE)
18 alle Jean Rostand, 91025 Evry

CEDEX - France
Email: seddik@iie.cnam.fr

Yacine Ghamri-Doudane
Networks and Multimedia

Systems Research Group (LRSM)
Institut d’Informatique d’Entreprise (IIE)

18 alle Jean Rostand, 91025 Evry
CEDEX - France

Email: ghamri@iie.cnam.fr

Sidi-Mohammed Senouci
France Telecom R&D

2 Av. Pierre Marzin, 22307
Lannion, France

Email: sidimohammed.senouci@
orange-ft.com

Abstract— Ad hoc networks have gained place in the research
area recently. There are many researches regarding different
topics related to such networks, such as routing, media access
control, security, scalability, and many others. There are two
usual methods to test and evaluate the performance of ad hoc
networks: simulations and real test-bed. A network emulator is
a tradeoff between pure simulation and real test-bed. Here, we
propose a multi-hop wireless ad hoc network emulator that uses
the advantages of Network Simulator (NS-2) and traffic shaping
(DummyNet), that is called SEDLANE. SEDLANE is a network
emulator that is based on TCP behavior characteristics. Using
SEDLANE, we can emulate a whole multi-hop ad hoc network
through the data packet loss and Round Trip Time (RTT) values
over the TCP connection. SEDLANE helps testing and evaluating
ad hoc network protocols using very simple and inexpensive
test-bed configuration. The results confirm that; introducing
SEDLANE within a simple configuration network (possibly 2
nodes) gives exactly the same results as having a wireless mobile
multi-hop ad hoc network of any size.

I. INTRODUCTION

A wireless ad hoc network consists of independent nodes
that communicate through the wireless channel without the
need of network infrastructure or a centralized administra-
tion. Due to its specific nature, many researches have been
developed so that new network protocols and applications are
introduced. Thus, it is important to evaluate these new proto-
cols and applications within an ad hoc network environment.
Generally, the following two ways can be used in order to
achieve that evaluation:
• Building a real test-bed for ad hoc networks with the

desired network conditions, protocols and applications.
Although that this method is very realistic, it is expensive
to setup. Actually, there is no researches has been done
in a scale beyond a dozen nodes.

• Using network simulation, such as NS-2 [1]. Simulating a
network is always more easy than constructing a real test-
bed. On the other hand, the traffic used in the simulator
is generated by traffic models that some times do not
match real application behavior. Also, some performance
parameters can not be evaluated through simulations
(mainly, node related performance parameters such as
CPU usage and computational energy consumption).

TCP throughput could be calculated using the RTT delay
and data packet loss over the connection. Floyd et al. [2] and

Ott et al. [3] propose a model that estimates the throughput
of a TCP connection under known delay and loss conditions
as follows:

rTCP =
1.22 ∗M

τ ∗
√

l
(1)

Where: rTCP is the TCP connection throughput, M is the
maximum packet length, τ is the round trip time of the
connection and l is the average loss measured during the
lifetime of the connection. From such model, one can say that
TCP performance depends strongly on RTT values and loss
rates.

In this paper, we propose a multi-hop wireless ad hoc
network emulator that uses the TCP trace files of NS-2 [1]
in order to introduce the effect (loss rates, and RTT values) of
multi-hop wireless ad hoc network into a well-known traffic
shaping tool ”Dummynet” [4]. If we take into consideration
that most network experimentation begin with simulations, it
would be useful to extend the simulation results beyond the
scope of the simulator capabilities by using an emulator that
uses the same network circumstances (through the network
simulator trace file). As it is easier to control the network
environment using simulation tool, we take this advantages
by generating the desired scenarios within an ad hoc network
environment using NS-2 (as a simulation tool) and then we
inject its trace files into dummynet (as a traffic shaping tool)
to have the same effects on a real traffic scenarios as if we
had constructed a real multi-hop wireless ad hoc network
environment. Hence, we obtain a Simple Emulation of Delay
and Loss for Ad Hoc Networks Environment (SEDLANE).

SEDLANE allows to emulate a multi-hop wireless ad hoc
network of any scale in a virtual way and with any mobility
scenario without the need of moving (physically) the ad hoc
nodes. SEDLANE does not need any additional knowledge
of a new emulating tool. It uses a well known and free
network simulation (NS-2) and traffic shaping (Dummynet)
tools. Additionally, it is an inexpensive tool and does not
need a special hardware setup. This tool enables us to test
the network protocols performance at the end points of any
wireless ad hoc network (emulated by SEDLANE). The entire
wireless ad hoc network environment is emulated using only
one machine (i.e. a particular machine installed in the middle
of the two communication end points or even one of the

Senouci
Mais rien ne prouve ça!!! A reformuler.

Senouci
Des redondances dans ce patragraphe. A raccourcir..

Senouci
Introduction trop longue. à Réduire en une seule page..

Senouci
Abstract long.. Enlever la première et la deuxième phrases de l'abstract

Senouci
Il ya beaucoup de redits dans le papiers.

communication end-points can also play this role). SEDLANE
represents network nodes’ mobility, ad hoc routing protocol,
and TCP connection throughput through RTT values (delay)
and data packet loss within the network.

Our goal is to propose a simple emulator that helps in
evaluating new ad hoc network protocols and applications
that are running above TCP. From that point of view, we
characterize a useful ad hoc network emulator by the following
features:
• Simple and easy to implement.
• Does not require any specific or expensive networking

hardware.
• The tests must be controlled and repeatable.
• The ability to emulate different ad hoc network parame-

ters (ad hoc routing protocols, nodes’ mobility, and TCP
connection throughput) using a small set of emulated
variables (delay and loss)

• Emulating multi-hop wireless ad hoc network of any size
using a small number of physical machines.

The remainder of this paper is organized as follows: after
presenting the motivation behind our work in section II,
section III overviews dummynet and its main function, section
IV presents SEDLANE. In sections IV-A and IV-B we describe
the main operation modes of SEDLANE and the calculation
algorithms used. Section V introduces the validation results
of SEDLANE. Finally, we summarize main results and give
some ideas for future work in section VI.

II. RELATED WORK

According to the above ad hoc emulator features, we will
discuss, in this section, the most known emulators in order
to find the one that meets our requirements. User Mode
Linux (UML) [5] is a system that can be used for emulating
wireless networks. It allows using several independant Linux
instances each running an adapted version of a complete Linux
kernel in user mode, providing a shared network environment
through the base Linux system. In [6] the authors stats that,
UML emulation performance is severely reduced, when used
to create wireless ad hoc network emulations, due to the
fact that UML runs in user mode and privileged operating
system functions must be emulated by the underlying kernel
running on the real hardware. In addition, UML offers only a
virtual Ethernet interface and not a virtual WLANN wireless
interface (i.e. a 802.11b interface). UML itself emulates only
a single wireless node. To emulate an entire network, a central
controlling instance is required to monitor and control all
UML instances. MobiEmu [7] is one of such central control
solutions that emulates a basic wireless network based on
UML. The concept that MobiEmu has separate physical or
virtual machine for each emulated node, made UML and
MobiEmu are not the best choice for our work.

ModelNet [8] was initially developed for testing large-scale
distributed services for wired wide-area network environments.
ModelNet architecture is composed of Edge Nodes and Core
Nodes. Edge Nodes in ModeNet can run arbitrary architecture

and operating systems. They run native IP stacks and function
as they would in real environments with the exception that
they are configured to route IP traffic through ModelNet cores.
While, Core Nodes run a modified version of FreeBSD to
emulate topology-specific hop-by-hop network characteristics.
To decrease the number of edge machines required for large-
scale evaluations, ModelNet architecture implies Virtual Edge
Nodes (VNs). VNs enable the multiplexing of multiple appli-
cation instances on a single edge machine, with each instance
getting its own unique IP address. ModelNet edge machines
use internal IP addresses (10.*), thus the number of interfaces
that can be multiplexed onto an edge node is not limited
by IP address space limitations, but rather by the amount of
computational resources (e.g. threads, memory) that the target
application uses. ModelNet configures all VNs to route their
traffic through a particular ModelNet core.

Like ModelNet, MobiNet [9] architecture is composed of
edge nodes and core nodes. The edge nodes support a va-
riety of platforms and operating systems. While we perform
our current experiments on edge nodes running Linux, our
edge nodes could be a combination of different devices like
laptops, PDAs, etc. running different operating systems. As
in ModelNet, edge nodes in MobiNet host multiple virtual
nodes (VNs) to allow for large-scale emulations. MobiNet
cores emulate wireless network behavior at multiple layers
while eventually routing packets to the edge node hosting
the destination VN. MobiNet incorporates mobile wireless ad
hoc network characteristics. First, MobiNet emulates nodes’
mobility behavior, i.e., different movement patterns of nodes
in the topology. Second, it implements a routing module that
tracks the position of nodes and maintains a list of nodes
within transmission range for each node. The routing module
is responsible for finding routes to destination nodes as nodes
in the topology follow different movement patterns. Third,
MobiNet accounts for MAC layer collisions. Effects of packet
losses due to collisions in the MAC layer play an important
role in wireless networks, thus requiring MobiNet to emulate
MAC layer behavior. Although that, the number of physical
devices required in MobiNet is reduced, and the platform
seems to be well developed for a mobile wireless ad hoc
environments emulation, its setup is still complicated, with
regards to our requirements.

Mobile Network Emulator (MNE) [10] uses a static network
infrastructure to interconnect devices. Each device has two in-
terfaces, where one acts as a mobile emulation control channel
while the other is used for the emulated wireless network.
The latter can be an actual wireless interface, allowing for
some lower layer effects (such as collisions) to be taken into
account as well. Information about topology changes is sent
through the control channel, causing the nodes to set or remove
iptables-rules accordingly, as it is done in MobiEmu. The main
problem of this approach is that it still needs a separate device
for each emulated wireless host.

EMWIN [11] improves the issue with the number of phys-
ical machines by allowing each node to have several network
interfaces, each acting as a separate wireless node. EMWIN

Senouci
Je ne comprend pas ce point... Comment tester un algorithme de routage alors qu'il n'ya pas de routage dans l'émulateur?

Senouci
Trop long aussi..

intends to provide emulation of some MAC layer effects
by introducing an additional emulated MAC (eMAC) layer.
Again, due to a relatively high number of machines required,
this approach is still impractical for our needs.

JEmu [12] represents another emulation system for mobile
ad hoc networks. However, It has a limited scalability due
to the fact that each emulated node must run on a separate
physical machine. That seems impractical for us. In [13]
the authors propose an approach for wireless networks and
applications experimentations using a real MAC layer. Though
that a real MAC layer could be an advantage, scalability stays
limited.

NEMAN [14] is designed to emulate a relatively large scale
wireless network, up to hundreds of nodes, within a single
physical machine. With that respect, NEMAN is closest to
MobiNet. On the other hand, the number of emulated nodes
is also limited by the physical machines resources.

In addition, none of the above emulations emulates an
ad hoc network taking into consideration TCP connections
characteristics (data packet loss and RTT delay). As mentioned
earlier, emulating TCP connection throughput depends on
these values.

III. OVERVIEW OF DUMMYNET

Dummynet is a traffic shaping tool that have been origi-
nally designed for testing networking protocols [4]. Through
dummynet, we can enforce delays, packet losses, queue and
bandwidth limitations. Figure 1 illustrates the main function
of dummynet. Dummynet is entirely controlled by the system’s
ipfw (IP Fire-Wall) commands and a set of sysctl (System
Control) variables. The ipfw commands help the user defining
the rules to be applied by dummynet on the packets crossing
a particular network interface on its input or output. Unlike
many other traffic shaping packages, dummynet has a very
little overhead. All processing is done within the kernel and
no data copying involved in moving packets through pipes.
Dummynet implements the concept of pipes, which is defined
as a communication channel between the source and the
destination. It is able to handle thousands of pipes. Also, any
packet could be influenced by several rules. Regarding the
rules associated to each pipe (communication channel), the
packets will be manipulated. We can use the same command
to configure different network parameters, such as bandwidth,
delay, queue size, and packet loss. For more details of dum-
mynet configurations and control, refer to [4].

Our choice of using dummynet was based on the fact that,
dummynet helps implementing data packet loss and traffic de-
lay constrains easily within the system’s kernel. Additionally,
with minimum processing overhead.

IV. SIMPLE EMULATION OF DELAYS AND LOSSES FOR AD
HOC NETWORKS ENVIRONMENT [SEDLANE]

The main idea of SEDLANE is to configure the dummynet
pipes (defining rules) through NS-2 trace files. To do so, SED-
LANE uses the NS-2 TCP trace file to identify the classes of
packets by gathering together the packets that have almost the

Fig. 1. The principle of Dummynet operation

Fig. 2. The principle of SEDLANE operation

similar values of RTT. Then, SEDLANE dedicates one pipe, or
communication channel, for each group of packets; respecting
their proportion to the total number of packets within the trace
file. Packet loss percentage can be either calculated from NS-
2 TCP trace file or NS-2 standard trace file; and then can be
applied to dummynet pipes. Hence, according to the identified
classes of packets, the proportion of packets per-class, and the
loss rates that are distributed among classes, SEDLANE will
in the following dynamically generate the dummynet rules to
be applied on the packets. Figure 2 illustrates the SEDLANE
operations while the different algorithms used by SEDLANE
are described below.

A. SEDLANE Operation Modes

We have two operation modes in which we can run SED-
LANE; the choice of using them depends on the user’s
experimentation methodology. We will show in the evaluation
study the advantages of each of these modes.

1) Simultaneous operation mode: In this mode of opera-
tion, SEDLANE configures all ipfw rules (dummynet com-
munication channels) at the same time, assigning each pipe
a different probability value that corresponds to the amount
of traffic sent with each RTT (as extracted from the NS-2
TCP trace file). SEDLANE operates in simultaneous mode by
default. This mode reflects the normal operation mode of the
system’s ipfw. Figure 3 describes this operation mode. as can
be shown from the Figure, using simultaneous operation mode
implies all the ipfw rules without time constrains. Thus, if the
user needs to emulate an ad hoc network for a time greater
than that of the simulation scenario, SEDLANE Simultaneous
mode will be the right choice.

2) Sequential operation mode: In Sequential operation
mode, as can be seen from Figure 4, SEDLANE configures
only one ipfw rule at a time. Each rule will be flushed after
a certain ”lifetime” (the time during which the simulated
connection stayed at an RTT value) before a new rule (with a
new RTT and loss value) is configured. The ”lifetime” of each
rule can be either provided as a command line argument or
extracted from the NS-2 TCP trace file. In the first case, the
provided lifetime will be applied to all rules, one after another.
Whereas in the latter case, each rule will have a different

Senouci
Je pense qua ca nécessite tout une section.. A réduire et à merger avec la section suivante..

Senouci
!!!

Senouci
Mais pourquoi cette possiblité d'avoir un meme lifetime??

Fig. 3. SEDLANE Simultaneous operation mode

Fig. 4. SEDLANE Sequential operation mode

lifetime corresponding to that in the NS-2 TCP trace file. The
algorithm used to calculate the sequential delay values from
the TCP trace file will be explained later. In this operation
mode, SEDLANE emulates exactly the data found in the NS-2
TCP Trace file, respecting the time of the simulation scenario.
This time can be controlled, if the user find that it necessary,
by specifying it at the command line. In some cases, the life
time of a RTT transition is so small that the effect can not
be noticed. Then, increasing that time may help making this
effect more clear.

B. SEDLANE Algorithms

SEDLANE starts by reading NS-2 trace files, specified by
the user at the command line. According to data contained at
these file and command line arguments, SEDLANE decides
whether to trigger some calculation algorithms. Figure 5
shows the principal SEDLANE calculation algorithms. These
algorithms will be discussed in details by the following.

1) Input Data from trace files: SEDLANE extracts the
following data from the NS-2 trace files specified by the user
at the command line.
• Number of different RTT samples found in the file.
• Timestamp of each RTT transition
• Total data bytes transmitted and that of each RTT.
• Total data bytes retransmitted and that of each RTT.
• Total connection time.
• Lifetime for each RTT.
• Total data bytes dropped and that of each RTT.
2) Number of Pipes used by SEDLANE: This argument

defines the number of rules to be configured according to the
desired accuracy. Note that configuring a large number of rules
requires more CPU resources might affect the performance of
the test-bed. If the ”number of different RTT samples found

Fig. 5. SEDLANE Operation Functions

in the TCP trace file” is equal to or less than this argument.
SEDLANE dedicates a dummynet pipe for each RTT value. If
not so, SEDLANE calculates new RTT values that correspond
to the maximum number of pipes to be used given by the
user. Calculating the new RTT values is done through RTT
calculation algorithm, which will be explained in the following
section.

3) RTT Calculation Algorithm: If the ”number of different
RTT samples found in the TCP trace file” is greater than
”maximum number of pipes” defined by the user. SEDLANE
starts RTT calculation algorithm. This algorithm is used to
calculate new RTT samples from the original ones within the
TCP trace file. These new values are calculated as shown in
Figure 6. Where; RTTnew1,2,..,n−1 are the new generated RTT

Senouci
argument, (un virgule au lieu du point)

Senouci
c'est K, n'est ce pas? Si oui, il faut l'indiquer). I dem pour N

Senouci
C'est N? Est ce l'utilsateur le donne? Si oui, comment il choisit cette valeur?

Senouci
Si N=K, on aurait pas ce problème. Alors ceci rejoint ma première question sur le choix de N par l'utilisateur.

Senouci
Il ya des blocs que je ne comprend pas dans cet chart. Par exemple: le "NO" de "NS-2 standard Trace File?"
Mettre au lieu de la formule plr=loss/sent, "PLR calculation" comme dans le sous-titre. Meme chose pour la proba.

Fig. 6. SEDLANE RTT Calculation Function

samples; RTTi and RTTi+1 are two original consecutive RTT
samples.

SEDLANE repeats the calculations until the new number
of RTT samples matches the defined number of pipes. It is
possible that the number of resulting ipfw rules be less than
the provided number of pipes. This comes from the fact that
SEDLANE does not allow configuring two consecutive pipes
with equal RTT values. Additionally, in simultaneous mode,
only unique RTT values are allowed, thus there will be one
rule per each unique RTT value.

4) Probability Calculation Algorithm: Probability is used
by dummynet to represent the probability of getting a match on
this rule if all other fields are correct. The probability assigned
to each ipfw rule depends on the SEDLANE’s operation
mode: either sequential or simultaneous. In sequential mode,
each rule will have a deterministic probability; since there is
only one rule present at a time. In simultaneous mode, the
probability assigned to each ipfw rule is calculated as shown
in Figure 7. Where; probRTTi

is the assigned probability for
RTTi, txbytesRTTi is the data transmitted during the RTTi

Lifetime, and txbytestotal is the total data transmitted over
the emulated connection, probnew1 , is the new generated
probability; probi and probi+1 are two original consecutive
probability values; N is the length of original probability list;
N − 1 is the length of the new generated probability list,
probnew is a new generated probability value from Equation
(4), probadapt1is the adapted probability value.

The first equation in Figure 7 demonstrates how probability
values are calculated for each RTT sample. The probability
assigned to each rule is the ratio of the transmitted data bytes
during a certain RTT lifetime to the total number of data bytes
transmitted over the connection, as extracted from the NS-2
TCP trace file. In case, the number of RTT transitions in the
trace file is higher than the provided number of pipes, the
probability of each new RTT value is calculated according
to equation (4). The sum of the newly generated values is
always less than 1. Yet, since these are probability values,
the values will be adapted again so that their sum equals 1.
This is done by distributing the difference among the different
probabilities according to their respective values, as shown in

Fig. 7. SEDLANE Probability Calculation Function

Fig. 8. SEDLANE Data Bytes Transmitted Calculation Function

the third equation of the above Figure.
The above process will continue till we have a number of

probability values that is equal to the number of pipes to be
configured.

5) Packet Loss Ratio Calculation Algorithm: In order to
calculate the packet loss ratio for each ipfw rule, SEDLANE
performs the following operations:
• Calculate the amount of data transmitted with each RTT.
• Calculate the amount of data dropped or retransmitted

during the lifetime of each RTT.
• Calculate the PLR for each RTT as the result of dividing

the corresponding amount of loss by the amount of data
sent.

These operations are detailed below.
Calculating the amount of transmitted data
SEDLANE calculates the amount of transmitted data for

each RTT: txbytesRTT , as well as the total amount of data
transmitted: txbytestotal. If the number of RTT values re-
trieved from the NS-2 TCP trace file file is greater than the
provided number of pipes, the following iteration takes place:
A new list of txbytesRTT values is generated using the fist
Equation shown in Figure 8.

The algorithm then calculates the new sum of transmitted
data [as in Equation (7)]. Then, the algorithm maintains the
original total amount of transmitted data. This is done by dis-
tributing the difference between the original sum txbytestotal

Senouci
Pourquoi des figures pour les equations. Je propose de laisser comme ça mais retirer la legende et donner des numéros aux equations.

Senouci
Idem.. mais il faut numéroter que l'équation citée dans le texte.

Fig. 9. SEDLANE Packet Loss Ratio Calculation Function

Fig. 10. SEDLANE Sequential Delay Calculation Function

and the new sum txbytesnewTotal among the elements of
the new generated list according to their respective values
[Equation (8)]. Thus, after each iteration round, the total
amount of transmitted data will always equal txbytestotal.
The iteration above will continue till we have a number of
txbytesRTT values that is equal to the number of pipes to be
configured.

Calculating the amount of lost data
SEDLANE adopts two methods to calculate lost data. By

default, SEDLANE uses NS-2 TCP trace file to calculate the
data packet loss ratio. It records the number of retransmitted
bytes during each RTT lifetime, and uses this value as the
amount of lost data. The retransmitted data bytes include data
bytes retransmissions due to retransmission time out (RTO)
and fast retransmit (FR). Alternatively, SEDLANE is able to
calculate the data packet loss ratio from the standard NS-
2 trace file. SEDLANE counts the amount of dropped data
bytes during the lifetime of each RTT, and uses this value as
the number of lost data. In case the number of RTT values
retrieved from the NS-2 TCP trace file is greater than the
provided number of pipes, SEDLANE executes the algorithm
explained in the previous section (IV-B.5)and maintains the
total amount of lost data similarly.

Calculating the Packet Loss Ratio
After determining the amount of transmitted data and

lost data for each pipe. Calculation of PLR is simple [Fig-
ure 8]. Where; plrRTT (i) is the packet loss ratio of RTTi;
lostbytesRTT (i) and txbytesRTT (i) are the lost data bytes and
transmitted data bytes of RTTi respectively.

6) Sequential Delay Calculation Algorithm: Sequential de-
lay is the Lifetime of each RTT. This argument could be
calculated from NS-2 TCP trace file or provided by the user
as a command line argument. If entered by the user, this value
will be used for all configured ipfw pipes. Meaning that all the
RTTs will have the same Lifetime duration. If calculated from
NS-2 TCP trace file file [Figure 10]. Where; RTTi(lifT ime)

is the life time of RTTi; TSRTTi and TSRTT (i+1) are the
timestamps of RTTi and RTTi+1 respectively.

V. SEDLANE VALIDATION

In order to validate SEDLANE, we tested it with different
network scenarios. The validation test-bed is shown in Figure

11. We use TTCP as a TCP traffic generation tool between the
source and destination. The laptop in the middle (SEDLANE)
is configured to be the gateway between the two others. Thus,
we guarantee that the traffic exchanged between the end point
laptops must pass through SEDLANE, where we impose the
emulation rules. We send 16Mbytes TCP data using TTCP.
We analyze the traffic using Tcpdump [15] and Tcptrace [16].
Tcpdump is an open source powerful tool that allows us to
sniff network packets and make some statistical analysis out
of those dumps. Tcptrace is a tool for analysis. It can take
the files produced by several popular packet-capture programs,
including Tcpdump as input. Tcptrace can produce several
different types of output containing information on each
connection seen, such as elapsed time, bytes and segments
sent and received, retransmissions, round trip times, window
advertisements, throughput, and more. It can also produce a
number of graphs for further analysis.

We configured our simulation scenarios in NS-2 as follows:
each simulation consists of a 20 nodes network confined in a
(670m x 670m) area. 14 TCP connections were established
(ftp traffic used with a packet size of 1000 bytes). The
simulation time is set to 400 seconds. We used OLSR as an
ad hoc routing protocol in our simulations. Also, we test both
simultaneous and sequential operation modes of SEDLANE.
In our simulations, we vary the nodes’ mobility rate to get
different loss and delay variations.

In order to evaluate SEDLANE performance, we com-
pare the data extracted from NS-2 trace files to be used
in ipfw pipes’ configuration with SEDLANE results. The
output results are captured by Tcpdump at the sender end
point, and then analyzed by Tcptrace. In sequential operation
mode, we examine two parameters; evolution of RTT values
and average connection throughput between the end points.
While in simultaneous operation mode, we test the probability
distribution of RTT values with respect to the total amount of
data transmitted.

The results prove that SEDLANE is capable of emulating
effectively the delay and data packet loss of an ah doc network
since it gives the same results as in the simulations scenarios.

A. SEDLANE Results

In this section, we analyze SEDLANE validation results
obtained using the above test-bed configuration.

1) SEDLANE sequential operation mode: In this operation
mode, ipfw pipes are configured and applied according to NS-2
TCP trace file. Thus, the RTT evolution applied by SEDLANE
should follow the RTT transitions sequence in the same file.
In addition, the time in which the RTT value will be applied
on data packets should correspond to RTT life times within
NS-2 TCP trace file. This is confirmed by Figures 13 and
15. When emulating loss and delay within an ad hoc network,
it is expected to view the effect of these parameters on the
end-to-end average throughput of the emulated connection.
In the mean time, this behavior should be the same as in
the simulation results. We calculate the average throughput
from the NS-2 TCP trace file (simulation result) and compare

Senouci
lesquels?? je ne vois que deux (5 et 30 m/s).

Fig. 11. SEDLANE Validation Test-bed

Fig. 12. Average Throughput at 5m/s mobility rate [sequential operation
mode]

it with the average throughput of the communicating nodes
in our test-bed (emulation result). The result is confirmed
by both Figures 12 and 14. It can be shown from these
figures that, the effect of loss and delay imposed by SEDLANE
gives the degradation behavior as in the simulations regardless
of the data transmission rate. We must note that, the total
number of data transmitted by NS-2 simulation scenarios is not
necessarily the same as in the test-bed scenarios. On the other
hand, we get always the same average throughput behavior.

2) SEDLANE simultaneous operation mode: In SEDLANE
simultaneous operation mode, the ipfw pipes are configured
according to NS-2 TCP trace file but applied according to its
corresponding probability. This probability reflects the amount
of data transmitted for each RTT transition with respect to the
total amount of data transmitted over the emulated connection.
In this operation mode, SEDLANE follows the normal ipfw
operation guidelines. Figure 16 proves that SEDLANE re-
spects the RTT probability distribution of the used NS-2 TCP
trace file used. Here again, the results are confirmed regardless

Fig. 13. RTT Evolution at 5m/s mobility rate [sequential operation mode]

of the amount of data used within the simulation scenarios.
Note that simultaneous operation mode does not provide a
fine grain emulation of the scenario represented by the TCP
trace file.

VI. CONCLUSION

Mobile wireless ad hoc networks have gained more and
more interests in the last decade. Many protocols and applica-
tions, targeting such networks, have been developed. In order
to test and evaluate the performances of these protocols and
applications, using simulation could do part of the work. On
the other hand, having realistic test-bed configuration is very
costly. From which, comes the importance of emulation tools.
Emulating communication networks helps evaluating new net-
work protocols and applications using less expensive test-bed
configurations and real traffic. In this work, we propose new
and simple emulation tool. This emulation takes the advantage
of network simulation tools to control the desired network
conditions. Then, using the simulations traces to introduce the
same effects on real data traffic using simple and inexpensive
test-bed configuration. SEDLANE uses both data loss and
packets RTT values as network performance parameters from
the simulation scenarios and reproduces the same effect of
such networks by emulation. The validation results confirms
that SEDLANE is capable of emulating the different network
parameters and having an accurate network performance. The
validation results show that, SEDLANE, as an ad hoc network
emulator, can emulate a ad hoc network scenarios and gives
same performance in terms of delay and data packet loss as
same as in a network simulator. Thus, SEDLANE helps in
testing and evaluating many ad hoc network features (such
as mobility rates, ad hoc routing protocols, and transmission
control protocol).

Senouci
Je ne comprends toujours pas pourquoi il ya un lien sans fil????

Senouci
A alleger.. Retirer par exemple les premières phrases..

Senouci

Senouci

Senouci
Pourquoi on émule alors? Si on a les memes resultats de simulation, alors autant rester sur les simulations?

Senouci
Puisque c'est les memes résultats que NS alors pourquoi on émule??

Fig. 14. Average Throughput at 30m/s mobility rate [sequential operation
mode]

In a future work, we think developing GUI (Graphical User
Interface) for SEDLANE.

REFERENCES

[1] Network Simulator-NS-2. Available at www.isi.edu/nsnam/ns/
[2] S. Floyd and F. Kevin, Router mechanisms to support end-to-end con-

gestion control. Technical report, February 1997
[3] T. Ott, J. Kemperman, and M.Mathis, Window size behavior in TCP/IP

with constant loss probability. In The Fourth IEEEWorkshop on the
Architecture and Implementation of Hi gh Performance Communication
Systems (HPCS97), Chalkidiki, Greece, June 1997

[4] Dummynet. Available at http://info.iet.unipi.it/ luigi/ip dummynet/
[5] J. Dike, A User-Mode Port of the Linux Kernel. 5th Annuel Linux

Showcase Conference, Oakland, California, 2001
[6] M. Engel, M. Smith, S. Hanemann and B. Freisleben,Wireless Ad-Hoc

Network Emulation Using Microkernel-Based Virtual Linux Systems.
Proceedings of the 5th EUROSIM Congress on Modeling and Simulation,
Marne la Vallee, France, pp. 198-203, EUROSIM Publishers, 2004

[7] Y. Zhang and W. Li, An Integrated Environment for Testing Mobile Ad
Hoc Networks. Proceedings of the 3rd ACM International Symposium
on Mobile Ad Hoc Networking Computing, pp. 104-111, 2002

[8] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase,
and David Becker, Scalability and Accuracy in a Large-Scale Network
Emulator. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI), December 2002

[9] P. Mahadevan, A. Rodriguez, D. Becker and A. Vahdat,MobiNet: A
Scalable Emulation Infrastructure for Ad Hoc and Wireless Networks.
Mobile Computing and Communications Review, Volume 10, Number 2,
2004

[10] Macker, J. P., Chao, W., Weston, J. W.,A low-cost, IP-based mobile net-
work emulator (MNE). MILCOM 2003 - IEEE Military Communications
Conference, 2003, 22, 481-486

[11] P. Zheng and L. Ni, EMWIN: Emulating a Mobile Wireless Network
using a Wired Network. In Proceedings of WOWMOM, September
2002

[12] J. Flynn, H. Tiwari, and D. O’Mahony, A Real-Time Emulation System
for Ad Hoc Networks. In Proceedings of the Communication Networks
and Distributed Systems Modeling and Simulation Conference, January
2002

[13] G. Judd and P. Steenkiste, Using Emulation to Understand and Improve
Wireless Networks and Applications. In Proceedings of NSDI, May 2005

Fig. 15. RTT Evolution at 30m/s mobility rate [sequential operation mode]

[14] M. Puzar and T. Plagemann, NEMAN: A Network Emulator for Mobile
Ad-Hoc Networks. Technical Report no.321, ISBN 82-7368-274-9,
Department of Informatics, University of Oslo, March 2005

[15] TCPDump. Available at http://www.ethereal.com/docs/man-
pages/tcpdump.8.html

[16] TCPTrace. Available at http://jarok.cs.ohiou.edu/software/tcptrace/

Senouci
Pas trop riche le future work...
Questions:
Si on a un nouveau protocole de routage à tester, comment procéder?

Fig. 16. Probability Distribution of RTT Values at 5m/s [simultaneous
operation mode]

