
Lightweight and Distributed Algorithms for Efficient
Data-Centric Storage in Sensor Networks

Ghazi AL SUKKAR, Hossam AFIFI
Institut National des Telecommunications

Evry, France

Sidi-Mohammed SENOUCI
France Telecom R&D

Lannion, France

Abstract— In this paper we propose two algorithms for efficient
data-centric storage in wireless sensor networks without the
support of any location information system. These algorithms are
intended to be applied in environments with large number of
sensors where the scalability of the network has great issue.
During the first algorithm, each sensor obtains a unique
temporary address according to its current relative location in
the network. The second algorithm is used to route data from one
sensor to another, this routing algorithm only depends on the
sensor’s neighborhood, i.e. in order to implement the routing
table each sensor needs only to exchange local information with
its first hop neighbors. The forwarding process used in this
algorithm resembles the one found in Pastry peer-to-peer
protocol.

I. INTRODUCTION

A wide range of application scenarios are proposed in the
literature for wireless sensor networks [1, 2], examples of such
applications are: safety monitoring, real-time pollution
monitoring, wildlife monitoring, military sensing and tracking,
etc.
For disseminating and storing the sensed data, three methods
are available in the literature [3, 4]:
1) Local storage: here, each sensor keeps the data it senses
locally. To retrieve data, a query must be flooded through the
network, causing sensors with data relevant to the query to
send data back to the base station.
2) External storage: in this method, data is sent to the base
station without waiting for a user to send a query. While
external storage avoids flooding the network with a query, it
may waste energy when data that the user is not interested in is
sent to the base station.
3) Data-centric storage: in data-centric storage, events are
named, and sensors cooperate locally to detect named events.
When a sensor detects a named event, it determines which
sensor is responsible for that name, and then stores the data at
that sensor. Which sensor is responsible for storing a type of
data is typically determined by taking a hash of the name, and
mapping that hash onto a sensor in the network. When a user
wishes to query the network, he can send the query only to the
sensor responsible for the data relevant to the query. Note that
in this approach, queries do not need to be flooded through the
network, nor does data that the user does not ask about get
sent to the base station. Additionally, the query may be
partially processed at the sensors storing the data, allowing a
small message consisting of aggregated data to be sent to the

base station instead of all individual records relevant to the
query.
Data-centric storage provides a (key, value) based associative
memory, in a way similar to the distributed hash table (DHT)
systems designed for the internet use, like Pastry [5], CAN [6],
and Chord [7], where nodes communicate in an application
level fashion through the formation an overlay network
between them.
In data-centric storage, events are named with keys and both
the storage of an event and its retrieval are performed using
these keys. Thus the two operations available in data-centric
storage based sensor network are:
Put(k,v): which stores the observed data v according to the key
k.
Get(k): retrieves whatever stored value associated with key k.
As shown by [5] data-centric storage is preferable in cases
where (1) the sensor network size is large, (2) there are many
detected events and not all event types are queried. In this
paper we will concentrate on this method, since it seems to be
the most efficient way of data dissemination and storage in
sensor networks.
Here, we present two correlated algorithms for efficient data-
centric in sensor networks. They are completely distributed
algorithms without any centralized control, which result in all
sensors have identical responsibilities.
In the first algorithm a sensor is assigned a unique address
according to its relative location in the network, the address
assignment mechanism works in a distributed manner where
address conflict is avoided without the need to flood the whole
network. Sensors change their addresses as they move, so that
their addresses have a topological meaning.
The second algorithm is the routing algorithm which is very
simple and depends only on the node’s first hop neighbors,
and the forwarding process resembles to some degree the one
found in Pastry peer-to-peer protocol [5].
The rest of this paper is organized as follows. In section II we
describe framework design requirements. The address
allocation algorithm is discussed in section III. In section IV
we describe the routing algorithm; section V describes data-
centric storage mechanism. We conclude with section VI.

II. FRAMEWORK DESIGN REQUIREMENTS

Topology dynamisms, scare resources, failure of nodes, and
scalability of the network are challenging issues in any design
for a data-centric storage system in sensor networks. Thus a

good framework design for data-centric storage should
guarantee the following requirements [4]:

• Persistency: a (k, v) pair stored in the system must
remain available to queriers, despite sensor node
failures and changes in the sensor network topology.

• Consistency: a query for k must be routed correctly
to a node where (k, v) pairs are currently stored; if
this node changes (e.g., to maintain persistence after
a node failure), queries and stored data must choose
a new node consistently.

• Scaling with network size: as the number of nodes
in the system increases, the system's total storage
capacity should increase, and the communication
cost of the system should not grow unduly. Nor
should any node become a concentration point of
communication.

As we will observe, our proposed algorithms try to pursue
these requirements in an efficient way.
In our algorithms a sensor is dynamically assigned a unique
address which changes with its movement to reflect sensor’s
location in the network, this address is used to simplify routing
in the network.
To join the network, a sensor establishes a physical connection
to at least one node already in the network and requests an
address. The neighbor node(s) answer(s) with an address. As a
sensor moves, it requests and receives new addresses from its
new neighbors. The forwarding is done in a way similar to the
one done in Pastry [5], one hop at a time, where each node
forwards the message to its immediate neighbor who gets the
message as close as possible to the destination.

III. ADDRESS ALLOCATION ALGORITHM

This algorithm enables the sensors to allocate addresses in a
local way i.e. without the need to contact faraway nodes in the
network or flooding the whole network, where at any given
time; each node manages a range of addresses including its
own address. Node address is dynamically assigned depending
on the node’s current position in the network. More
specifically, the addresses are organized as a tree. We call this
the address tree, see Fig. 1.
To understand this addressing assignment mechanism, let us
assume that the addresses are d digits with base 10 numbers,
so addresses will be in this form Ad-1, . . . , A0 , where

{ }0,1,...,9iA ∈ . As we will notice, the choice of the base B

will determine the maximum number of children a node could
have, in our example the maximum number of children is 9.
The base station will be a logical choice to play the role of the
first node which will form the network (since it is the most
stable node), so it will take the all zeroes address 00. . .0, we
call it the root node, as sensor nodes arrive in the
neighborhood of the root (i.e. they are in its transmission
range), they contact it to obtain an address (call these nodes
level 1 nodes). The root node control the first digit (leftmost
digit) of the address, where it give the first arriving node
address 100…0, the second arriving node 200…0 and so on up
to 900…0. These first level nodes control the second digit

(from left) in the address, so when nodes connect to any of
these nodes and ask for address, they fix the first digit as their
address and change the second digit according to node arriving
sequence. For example if a node arrive and it is in the
neighborhood of the node with address 100…0 and ask this
node for an address, then node 100…0 will give it the address
110…0, the second node ask 100…0 for an address will take
120…0 as an address and so on (we call node 100…0 parent
of nodes 110…0, 120…0,…,190…0 and thus they are its
children).
These second level nodes take control of the third digit and so
on. Fig. 1 show an example of an address tree with three digits
addresses, for d = 3 digits, the entire address space can be
represented by xxx, where x Є {0, 1,…, 9}, nodes in level l
subtree are the children of the node in level l-1. We call the
last level nodes in the tree leaves.

Figure 1. Address tree with three digits decimal address space.

These leaves do not take control of addresses since address
space reaches its limit.
Address tree illustrates how addresses are allocated; it does
not represent the actual network topology although address of
a node depends on its current position in the network. Fig. 2
shows an example of a network topology which uses this
algorithm.
When a new node i arrives in the network, it receives an
address Ri (call it temporary address) which will be used for
routing. A new node in the network receives the temporary
address from one of its neighbors (call it the parent neighbor
Pi). We assume the existence of some bootstrap mechanism
which allows new nodes to identify their neighbors in the
network. We apply the following criteria to assign one
temporary address to a new node. Using this criterion the
joining node selects, among a set of candidate neighbors, the
node which will be the parent neighbor of it. This node will be
the one with the least level i.e. the nearer to the root. If two or
more nodes have the same level then it chooses the node with
the least number of children, if a gain two or more nodes
satisfy this condition then it will choose the one with the least
address.
 After the new arriving node chooses the parent neighbor it
asks that parent for a temporary address which will be
assigned according to our address allocation algorithm. We
said that an association relationship established between the
two nodes. In Fig. 2 this association relationship is represented
by continuous thick lines, where the dotted thin lines represent
the neighborhood relationship.

IV. ROUTING ALGORITHM

The previously mention address allocation algorithm
simplifies the routing procedure, as we will see.
Having obtained its temporary address, the new node i also
learns the temporary addresses of its immediate neighbors.
This neighborhood information will compose its routing table.
In this algorithm a node routes a message by simply
forwarding to the neighbor whose address is the closest to the
searched temporary address of the destination until the
messages reaches the destination. This forwarding procedure
resembles the forwarding procedure in Pastry [5]; where the
message is forwarded to a node from the routing table that has
a temporary address with longer shared prefix with the
temporary address of the destination.

0

1

3

2
5

8

6

4

7

000

100

110

200

111120

210

220

300

9
112

10
400

11
310

13

12
211

221

14
311

15320

16321

To 111

To 311
Figure 2. Numbers in the circles are nodes identifiers at the same

timerepresent the sequence of nodes arrival at the network; numbers beside
the circles are nodes addresses.

If the node can not find in its routing table such a node that
have a longer shared prefix matching, it simply forward the
message to its parent an so on until the message reach its
destination.
Figure 2 shows an example of how the routing algorithm
works, here node 7 with R7 = 220 want to sent for the
destination 14 with R14 = 311. Node 7 find in its routing table
that node 16 has a temporary address that matches the
destination temporary address in the first digit, so it forwards
the message to this neighbor, in its turn node 16 forwards this
message to node 15 which is its parent neighbor since it does
not have in it routing table any node that has a longer prefix
matching with the destination node’s temporary address. Node
15 forward the message to node 11 which has a temporary
address that matches the destination’s temporary address in
two digits. Finally, this node forwards the message to node 14
which is the destination node.

V. DATA-CENTRIC STORAGE MECHANISM

As we will see, implement these algorithms in sensor networks
will simplify applying data-centric storage in these kinds of
networks. So here we will explain how this is done.

A. Event Storing Procedure Put(k,v):

This operation is used to identify the node which will be
responsible for storing a sensed named event v. We will
assume the existence of previously known naming system,
which maps each defined event to a key k.

By using any well-known functions like SHA-1 [8], the sensor
i which detect the event v, hashes the key of the sensed event,
and obtains an m-bit number. This number is then translated
using certain function into another number which falls in the
temporary address space, this number Rr is used to find the
sensor which will be responsible of storing the event data v, as
the following:
Sensor i forwards a registration message using Rr as a
destination address, by applying the routing procedure as in
section IV. This request will be forwarded until it reaches the
sensor having temporary address that has the longest prefix
matching with Rr. So this sensor is the one responsible for
storing the sensed data event v.

B. Event lookup Procedure Get(k):

The interested node s apply the same globally known hash
function on the events key, so it will get a temporary address
Rd , this temporary address is the one used to find the sensor
which is responsible for storing this event value v.
To find this sensor, the node s forwards a lookup message
using Rd as a destination address, applying the routing
algorithm in section IV, this message will be forwarded until it
reaches the sensor with the longest prefix matching with Rd,
this sensor is the final destination. So it is our target, which
will respond with the value v corresponding to the key k.

VI. CONCLUSION

Two algorithms were proposed for efficient data-centric
storage in wireless sensor networks without the support of any
location information system. These algorithms are intended to
be applied in environments with large number of sensors
where the scalability of the network has great issue.
Our future study will include sudden node failures and a
treatment of certain network issues, like network separation,
networks merging. And a study of this protocol performance
through simulation.

REFERENCES
[1] D. Estrin, L. Girod, G. Pottie, M. Srivastava, Instrumenting the world

with wireless sensor networks, International Conference on Acoustics,
Speech and Signal Processing, Salt Lake City, UT, May 2001.

[2] G. J. Pottie, W. J. Kaiser, Wireless integrated network sensors,
Communications of the ACM 43 (5) 2000, pp. 551-558.

[3] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-
centric storage in sensornets, Proc. ACM SIGCOMM Workshop on Hot
Topics In Networks, 2002.

[4] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.
Shenker. GHT: a geographic hash table for data-centric storage,
Proceedings of the ACM Workshop on Sensor Networks and
Applications, pp. 78--87, Atlanta, Georgia, USA:ACM, September 2002.

[5] Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in Proceedings of the
Middleware, 2001.

[6] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott
Shenker. “A Scalable Content-Addressable Network,” In Proceedings of
the ACM SIGCOMM, 2001.

[7] Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
“Chord: A Scalable Peer-topeer Lookup Service for Internet
Applications,” ACM SIGCOMM 2001, San Diego, CA, August 2001.

[8] “FIPS 180-1, Secure Hash Standard.” U.S. Department of
commerce/NIST, National Technical Information Service, Springfield,
Apr. 1995.

