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Abstract— In this paper we propose two algorithms for efficient 
data-centric storage in wireless sensor networks without the 
support of any location information system. These algorithms are 
intended to be applied in environments with large number of 
sensors where the scalability of the network has great issue. 
During the first algorithm, each sensor obtains a unique 
temporary address according to its current relative location in 
the network. The second algorithm is used to route data from one 
sensor to another, this routing algorithm only depends on the 
sensor’s neighborhood, i.e. in order to implement the routing 
table each sensor needs only to exchange local information with 
its first hop neighbors. The forwarding process used in this 
algorithm resembles the one found in Pastry peer-to-peer 
protocol. 

I. INTRODUCTION  

A wide range of application scenarios are proposed in the 
literature for wireless sensor networks [1, 2], examples of such 
applications are: safety monitoring, real-time pollution 
monitoring, wildlife monitoring, military sensing and tracking, 
etc. 
For disseminating and storing the sensed data, three methods 
are available in the literature [3, 4]: 
1)  Local storage: here, each sensor keeps the data it senses 
locally. To retrieve data, a query must be flooded through the 
network, causing sensors with data relevant to the query to 
send data back to the base station. 
2)  External storage: in this method, data is sent to the base 
station without waiting for a user to send a query. While 
external storage avoids flooding the network with a query, it 
may waste energy when data that the user is not interested in is 
sent to the base station. 
3)  Data-centric storage: in data-centric storage, events are 
named, and sensors cooperate locally to detect named events. 
When a sensor detects a named event, it determines which 
sensor is responsible for that name, and then stores the data at 
that sensor. Which sensor is responsible for storing a type of 
data is typically determined by taking a hash of the name, and 
mapping that hash onto a sensor in the network. When a user 
wishes to query the network, he can send the query only to the 
sensor responsible for the data relevant to the query. Note that 
in this approach, queries do not need to be flooded through the 
network, nor does data that the user does not ask about get 
sent to the base station. Additionally, the query may be 
partially processed at the sensors storing the data, allowing a 
small message consisting of aggregated data to be sent to the 

base station instead of all individual records relevant to the 
query. 
Data-centric storage provides a (key, value) based associative 
memory, in a way similar to the distributed hash table (DHT) 
systems designed for the internet use, like Pastry [5], CAN [6], 
and Chord [7], where nodes communicate in an application 
level fashion through the formation an overlay network 
between them. 
In data-centric storage, events are named with keys and both 
the storage of an event and its retrieval are performed using 
these keys. Thus the two operations available in data-centric 
storage based sensor network are: 
Put(k,v): which stores the observed data v according to the key 
k. 
Get(k): retrieves whatever stored value associated with key k. 
As shown by [5] data-centric storage is preferable in cases 
where (1) the sensor network size is large, (2) there are many 
detected events and not all event types are queried. In this 
paper we will concentrate on this method, since it seems to be 
the most efficient way of data dissemination and storage in 
sensor networks.   
Here, we present two correlated algorithms for efficient data-
centric in sensor networks. They are completely distributed 
algorithms without any centralized control, which result in all 
sensors have identical responsibilities.  
In the first algorithm a sensor is assigned a unique address 
according to its relative location in the network, the address 
assignment mechanism works in a distributed manner where 
address conflict is avoided without the need to flood the whole 
network. Sensors change their addresses as they move, so that 
their addresses have a topological meaning. 
The second algorithm is the routing algorithm which is very 
simple and depends only on the node’s first hop neighbors, 
and the forwarding process resembles to some degree the one 
found in Pastry peer-to-peer protocol [5]. 
The rest of this paper is organized as follows. In section II we 
describe framework design requirements. The address 
allocation algorithm is discussed in section III. In section IV 
we describe the routing algorithm; section V describes data-
centric storage mechanism. We conclude with section VI. 

II. FRAMEWORK DESIGN REQUIREMENTS 

Topology dynamisms, scare resources, failure of nodes, and 
scalability of the network are challenging issues in any design 
for a data-centric storage system in sensor networks. Thus a 



good framework design for data-centric storage should 
guarantee the following requirements [4]: 

• Persistency: a (k, v) pair stored in the system must 
remain available to queriers, despite sensor node 
failures and changes in the sensor network topology. 

• Consistency: a query for k must be routed correctly 
to a node where (k, v) pairs are currently stored; if 
this node changes (e.g., to maintain persistence after 
a node failure), queries and stored data must choose 
a new node consistently. 

• Scaling with network size: as the number of nodes 
in the system increases, the system's total storage 
capacity should increase, and the communication 
cost of the system should not grow unduly. Nor 
should any node become a concentration point of 
communication. 

As we will observe, our proposed algorithms try to pursue 
these requirements in an efficient way. 
In our algorithms a sensor is dynamically assigned a unique 
address which changes with its movement to reflect sensor’s 
location in the network, this address is used to simplify routing 
in the network.  
To join the network, a sensor establishes a physical connection 
to at least one node already in the network and requests an 
address. The neighbor node(s) answer(s) with an address. As a 
sensor moves, it requests and receives new addresses from its 
new neighbors. The forwarding is done in a way similar to the 
one done in Pastry [5], one hop at a time, where each node 
forwards the message to its immediate neighbor who gets the 
message as close as possible to the destination.  

III.  ADDRESS ALLOCATION ALGORITHM  

This algorithm enables the sensors to allocate addresses in a 
local way i.e. without the need to contact faraway nodes in the 
network or flooding the whole network, where at any given 
time; each node manages a range of addresses including its 
own address. Node address is dynamically assigned depending 
on the node’s current position in the network. More 
specifically, the addresses are organized as a tree. We call this 
the address tree, see Fig. 1.  
To understand this addressing assignment mechanism, let us 
assume that the addresses are d digits with base 10 numbers, 
so addresses will be in this form Ad-1, . . . , A0 , where 

{ }0,1,...,9iA ∈ . As we will notice, the choice of the base B 

will determine the maximum number of children a node could 
have, in our example the maximum number of children is 9. 
The base station will be a logical choice to play the role of the 
first node which will form the network (since it is the most 
stable node), so it will take the all zeroes address 00. . .0, we 
call it the root node, as sensor nodes arrive in the 
neighborhood of the root (i.e. they are in its transmission 
range), they contact it to obtain an address (call these nodes 
level 1 nodes). The root node control the first digit (leftmost 
digit) of the address, where it give the first arriving node 
address 100…0, the second arriving node 200…0 and so on up 
to 900…0. These first level nodes control the second digit 

(from left) in the address, so when nodes connect to any of 
these nodes and ask for address, they fix the first digit as their 
address and change the second digit according to node arriving 
sequence. For example if a node arrive and it is in the 
neighborhood of the node with address 100…0 and ask this 
node for an address, then node 100…0 will give it the address 
110…0, the second node ask 100…0 for an address will take 
120…0 as an address and so on (we call node 100…0 parent 
of nodes 110…0, 120…0,…,190…0 and thus they are its 
children). 
These second level nodes take control of the third digit and so 
on. Fig. 1 show an example of an address tree with three digits 
addresses, for d = 3 digits, the entire address space can be 
represented by xxx, where x Є {0, 1,…, 9}, nodes in level l 
subtree are the children of the node in level l-1. We call the 
last level nodes in the tree leaves. 

 

Figure 1.  Address tree with three digits decimal address space. 
 

These leaves do not take control of addresses since address 
space reaches its limit.  
Address tree illustrates how addresses are allocated; it does 
not represent the actual network topology although address of 
a node depends on its current position in the network. Fig. 2 
shows an example of a network topology which uses this 
algorithm.    
When a new node i arrives in the network, it receives an 
address Ri (call it temporary address) which will be used for 
routing. A new node in the network receives the temporary 
address from one of its neighbors (call it the parent neighbor 
Pi). We assume the existence of some bootstrap mechanism 
which allows new nodes to identify their neighbors in the 
network. We apply the following criteria to assign one 
temporary address to a new node. Using this criterion the 
joining node selects, among a set of candidate neighbors, the 
node which will be the parent neighbor of it. This node will be 
the one with the least level i.e. the nearer to the root. If two or 
more nodes have the same level then it chooses the node with 
the least number of children, if a gain two or more nodes 
satisfy this condition then it will choose the one with the least 
address. 
 After the new arriving node chooses the parent neighbor it 
asks that parent for a temporary address which will be 
assigned according to our address allocation algorithm. We 
said that an association relationship established between the 
two nodes. In Fig. 2 this association relationship is represented 
by continuous thick lines, where the dotted thin lines represent 
the neighborhood relationship. 



IV.  ROUTING ALGORITHM  

The previously mention address allocation algorithm 
simplifies the routing procedure, as we will see.  
Having obtained its temporary address, the new node i also 
learns the temporary addresses of its immediate neighbors. 
This neighborhood information will compose its routing table.  
In this algorithm a node routes a message by simply 
forwarding to the neighbor whose address is the closest to the 
searched temporary address of the destination until the 
messages reaches the destination. This forwarding procedure 
resembles the forwarding procedure in Pastry [5]; where the 
message is forwarded to a node from the routing table that has 
a temporary address with longer shared prefix with the 
temporary address of the destination. 
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Figure 2.  Numbers in the circles are nodes identifiers at the same 

timerepresent the sequence of nodes arrival at the network; numbers beside 
the circles are nodes addresses.  

 

If the node can not find in its routing table such a node that 
have a longer shared prefix matching, it simply forward the 
message to its parent an so on until the message reach its 
destination.  
Figure 2 shows an example of how the routing algorithm 
works, here node 7 with R7 = 220 want to sent for the 
destination 14 with R14 = 311. Node 7 find in its routing table 
that node 16 has a temporary address that matches the 
destination temporary address in the first digit, so it forwards 
the message to this neighbor, in its turn node 16 forwards this 
message to node 15 which is its parent neighbor since it does 
not have in it routing table any node that has a longer prefix 
matching with the destination node’s temporary address. Node 
15 forward the message to node 11 which has a temporary 
address that matches the destination’s temporary address in 
two digits. Finally, this node forwards the message to node 14 
which is the destination node. 

V. DATA-CENTRIC STORAGE MECHANISM 

As we will see, implement these algorithms in sensor networks 
will simplify applying data-centric storage in these kinds of 
networks. So here we will explain how this is done. 

A. Event Storing Procedure Put(k,v): 

This operation is used to identify the node which will be 
responsible for storing a sensed named event v. We will 
assume the existence of previously known naming system, 
which maps each defined event to a key k. 

By using any well-known functions like SHA-1 [8], the sensor 
i which detect the event v, hashes the key of the sensed event, 
and obtains an m-bit number. This number is then translated 
using certain function into another number which falls in the 
temporary address space, this number Rr is used to find the 
sensor which will be responsible of storing the event data v, as 
the following:  
Sensor i forwards a registration message using Rr as a 
destination address, by applying the routing procedure as in 
section IV. This request will be forwarded until it reaches the 
sensor having temporary address that has the longest prefix 
matching with Rr. So this sensor is the one responsible for 
storing the sensed data event v.  

B. Event lookup Procedure Get(k): 

The interested node s apply the same globally known hash 
function on the events key, so it will get a temporary address 
Rd , this temporary address is the one used to find the sensor 
which is responsible for storing this event value v. 
To find this sensor, the node s forwards a lookup message 
using Rd as a destination address, applying the routing 
algorithm in section IV, this message will be forwarded until it 
reaches the sensor with the longest prefix matching with Rd, 
this sensor is the final destination. So it is our target, which 
will respond with the value v corresponding to the key k.  

VI.  CONCLUSION 

Two algorithms were proposed for efficient data-centric 
storage in wireless sensor networks without the support of any 
location information system. These algorithms are intended to 
be applied in environments with large number of sensors 
where the scalability of the network has great issue. 
Our future study will include sudden node failures and a 
treatment of certain network issues, like network separation, 
networks merging. And a study of this protocol performance 
through simulation.  
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