
Performance Evaluation of Party Protocol

Ghazi AL SUKKAR, Mehdi SABEUR, Hossam AFIFI,

Badii JOUABER, and Djamal ZEGHLACHE
Institut National des Telecommunications

Evry, France

Sidi-Mohammed Senouci
France Telecom R&D

Lannion,France

 Abstract—In this paper we study a self organizing network
architecture, Party. Party is a new routing protocol intended to
be applied in environments with large number of nodes where the
scalability of the routing protocol plays an important role.
Party’s routing is unique and only depends on the current node’s
neighborhood. Routing tables are created on the basis of the first
hop neighborhood only. We will show the protocol performance
with a large number of nodes in the network, and compare it to
the legacy ad hoc routing protocols. Results show a large
improvement in terms of overhead and throughput.

Keywords: Multi-hop Routing, Distributed Hash tables, Self
Organizing Networks, Dynamic Address Allocation.

I. INTRODUCTION:
 Wireless Self-Organizing Networks (SONs) are expected to
play an important role in future communications. Such self-
organizing networks are not supposed to be underlying on an
IP infrastructure nor they depend on IP-like hierarchical
addressing.
The routing protocol is a key component in the network layer,
the current ad hoc routing protocols work well only up to a
few hundred nodes. Most of the current research in wireless
SONs routing protocols focus more on performance and
power consumption related issues in relatively small networks
and less on scalability. The main reason behind the lack of
scalability is that these protocols rely on flat and static
addressing. With scalability as a partial goal, some efforts
have been made in the direction of hierarchical routing and
clustering [1] [2] [3]. These approaches are promising, but
they do not seem to be actively pursued. Moreover it appears
to us as if these protocols would work well in scenarios with
group mobility [4], which is also a common assumption
among cluster based routing protocols.
In this paper, we study the performance of Party [22], a new
network layer in which the integrated routing protocol is very
simple and depends only on node’s neighbors, each node has
its own universal identifier (we can use as an identifier, the
node’s IP address or its MAC address) and is assigned a
temporary address relative to its location in the network. With
dynamic addressing, nodes change addresses as they move, so
their addresses have a topological meaning.
The rest of this paper is organized as follows. In section II we
describe the related work; Overview of Party basic operation
is discussed in section III, Performance analysis is reported in
section IV. Section V shows the simulation results. Finally we
conclude with section VI.

II. RELATED WORK:
Several routing protocols have been proposed for wireless
SONs especially for Ad hoc networks, most of them are IP-
based [6] [7] [8], where addresses are static and used to
identify the nodes. The design of a routing protocol has two
choices: (1) either keep routing entries for every node in the
network, or (2) resort to flooding route requests throughout the
network upon connection setup. Neither of these alternatives
scales well as the network size gets larger.
In order to achieve scalability some protocols were proposed.
In the Zone Routing Protocol (ZRP) [9] and Fisheye State
Routing (FSR) [10], nodes are treated differently depending
on their distance from the destination.
In multilevel-clustering approaches such as Landmark [11],
LANMAR [12], L+ [13], MMWN [1] and Hierarchical State
Routing (HSR) [14], certain nodes are elected as cluster heads
(also called Landmarks). A node’s address is defined as a
sequence of cluster head identifiers, one per level, allowing
the size of routing tables to be logarithmic in the size of the
network, but easily resulting in long hierarchical addresses.
Another way to achieve scalability is to use geographic
location information to assist in the routing, in these protocols
[15] [16] it is assumed that each node knows its location
coordinates using some technologies (e.g. GPS), although they
scale well in large network size, location information is not
always available. Taking this in consideration a number of
new routing protocols where invented that try to estimate node
coordinates in a relative way without the assistant of any
positioning system, example of these protocols NoGeo [17].
In Area Routing [18], nodes that are close to each other in the
network topology have similar addresses, without any explicit
nodes hierarchy. PeerNet1 [19], Tribe [20], and Party protocol
exploit this idea, i.e. nodes that are neighbors in the topology
take addresses that are close to each other. PeerNet is a
network layer where node’s address reflects its location in the
network and are registered with the respective node global
identifier in the distributed node lookup service, addresses are
organized as leaves of a binary tree (called address tree),
PeerNet routing is a recursive procedure descending through
the address tree. In Tribe, nodes are assigned a part of a
logical region and a relative address, the relative address of the
node also reflects its physical location in the network, Tribe
routing depends on the assigned regions, in Tribe the number

1 Which is now called DART protocol.

of entries in the node’s routing table is O(q) where q is the
number of immediate neighbors of that node.
Party, resembles PeerNet in the way of address allocation and
building routing tables that have the same number of entries as
in Tribe, where a small amount of information is sufficient to
implement routing tables, (in contrary to PeerNet where the
routing information passes through the whole network). Here
each node stores information about itself and its immediate
neighbors.

III. OVERVIEW OF PARTY PROTOCOL:
Each node has a static globally known and unique identifier
ID, Party assigns each node a unique address that changes
with node movement to reflect its location in the network
(temporary address). This address is used to simplify routing
in the network. Since the address of the node changes with its
movement, we need an additional lookup service providing the
temporary address for a given node identifier.
To join the network, a node establishes a physical connection
to at least one node already in the network and requests an
address. The neighbor node(s) answer(s) with an address. The
joining node then “registers” its identifier together with the
address in the distributed node lookup service. As a node
moves, it requests and receives new addresses from its new
neighbors. Each time the address change, the node updates its
entry in the lookup service.
In a typical data exchange, the sender node only needs to
know the identifier of the receiver. The sender looks up the
current address of the destination node using the lookup
service. The forwarding process is done in a way similar to the
one done in Pastry [5], one hop at a time, where each node
forwards the message to its immediate neighbor who forwards
the message as close as possible to the destination. If the
destination cannot be reached, the lookup table is consulted
along the way to find the new address of the destination.
Party basic operation includes the following mechanisms:

A. Address Allocation:
Party enables nodes to allocate addresses in a local way i.e.
without the need to contact far away nodes in the network, at
any given time; The addresses are organized as a tree. We call
this the address tree, see Fig. 1.
Let us assume that addresses are k digits decimal1 numbers,

1 0, ,ka a− … , the first node to exist in the network takes the all

zeroes address 00. . .0, call it the root node, as nodes arrive in
the neighborhood of this node (i.e. they are in the transmission
range of it), they contact it to obtain an address (call these
nodes level 1 nodes). The root node controls the first digit
(leftmost digit) of the address, where it gives the first arriving
node address 100…0, the second arriving node 200…0 and so
on up to 900…0. These first level nodes control the second
digit (from left) in the address, so when nodes connect to any
of these nodes and asks for an address, they fix the first digit
as their address and change the second digit according to node
arriving sequence.

1 We can use hexadecimal numbers or any base numbers.

The second level nodes take control of the third digit and so
on. Fig. 1 shows an example of an address tree with three
digits addresses, for k = 3 digits, the entire address space can
be represented by xxx, where x Є {0, 1,…, 9}, nodes in level l
subtree are the children of the node in level l-1. The leaves do
not take control of addresses since address space reaches its
limit. Fig. 2 shows an example of a network topology with
Party protocol in use.

B. The Routing Procedure:
Address allocation algorithm in Party simplifies the routing
procedure. Routing is performed on a hop by hop basis.
Having obtained its temporary address Ri from one of its
neighbors (we call this neighbor the parent neighbor Pi)
according to the parent selection mechanism as explained in
[22], the new node i also learns the temporary addresses of its
immediate neighbors through the periodically exchanged hello
messages.

Figure 1. Address tree with three digits decimal address space.

This neighborhood information will compose its routing table.
In Party, a node routes a message by simply forwarding to the
neighbor whose address is the closest to the searched
temporary address of the destination until the messages
reaches its target.

0

1

3

25

8

6

4

7

000

100

110

200

111120

210

220

300

9
112

10
400

11
310

13

12
211

221

14
311

15320

16321

To 111

To 311
Figure 2. Network with three digits address space. Numbers in the circles are

nodes identifiers; numbers beside the circles are nodes addresses.
If the node cannot find in its routing table such a node with a
longer shared prefix matching, it simply forwards the message
to its parent and so on until the message reaches its
destination. Fig. 2 shows an example of how the routing
algorithm works, here node 7 with R7 = 220 wants to send for
the destination 14 with R14 = 311. Node 7 finds in its routing
table that node 16 has a temporary address that matches the
destination temporary address in the first digit, so it forwards
the message to this neighbor, in its turn node 16 forwards this
message to node 15 which is its parent neighbor since it does

not have in it routing table any node that has a longer prefix
matching with the destination node’s temporary address. Node
15 forward the message to node 11 which has a temporary
address that matches the destination’s temporary address in
two digits. Finally, this node forwards the message to node 14
which is the destination node.

C. Address Registration Procedure:
After joining the network, the new node i has a temporary
address Ri. The next step is to identify the node which will be
responsible for storing its mapping information, i.e. the
rendez-vous node of node i. The operation of registering the
temporary address in the corresponding rendez-vous node is
mandatory for every arriving node.
By using any well-known function like SHA-1 [21], each node
hashes its identifier, ID, and obtains an m-bit number. This
number is then translated using certain function into a
temporary address Rr, this address is used to find the rendez-
vous node of node i as the following: Node i forwards a
registration request message using Rr as a destination address.
This request will be forwarded until it reaches the node having
temporary address that has the longest prefix matching with
Rr.
This node is the one responsible for storing the mapping
information of node i; (IDi, Ri, Pi). This mapping information
will be refreshed periodically, as long as node i maintains its
current position in the network. Also every node in the path to
the rendez-vous node will store this mapping in its cache for a
certain period of time. Also to avoid node failure each node
could selects more than one node to be its rendez-vous node,
where it will store its mapping information simultaneously in
all of these nodes.

D. Node lookup Procedure:
Since the ID of a node is not its address, Party provides a
distributed node lookup service for looking up a temporary
address given an identifier. Intuitively, each identifier is
mapped through some function to a single address and the
node that currently controls that address is required to store
the mapping and responding to requests for this mapping.
The source node applies the globally known hash function on
the destination node IDd, so it will get a temporary address Rd,
this temporary address is the one used to find the rendez-vous
node of the destination.
To find the rendez-vous node, the source forwards a mapping
request message using Rd as a destination address, applying
the same routing procedure in section B, each time the
message reaches a new node, this node will check its cache for
a fresh mapping information, if it finds this mapping, then it
will respond with mapping reply message to the source node,
otherwise it forwards the request to its neighbor whose address
is the closest to the searched temporary address Rd. If no such
cached information available in the path, then the request will
be forwarded until it reaches the node with the longest prefix
matching with Rd, this node is the rendez-vous node of the
destination. This rendez-vous node will respond with the
mapping information for the desired destination node. In the
backward path from the rendez-vous node to the source node,

this mapping information will be cached for a certain time in
each node on the path. This cached information is used in later
mapping requests by other nodes for the same mapping
information.

IV. PERFORMANCE ANALYSIS:

A. Scalability:
This scalability comes from the following new features:

• Size of the routing table, where each node has a
routing table of size O(q), where q is the number of
immediate neighbors of the node. Recall that in a
classical proactive protocol the table size depends on
the network size n; i.e. routing table size O(n).

• Signaling traffic needed to implement and maintain
the routing table, routing table entries are the
immediate neighbors and the only signaling traffic
needed is the hello signals between neighbors that
used to inform the neighborhood nodes that the node
is still alive and still in its position. Classical ad hoc
protocols, both proactive and reactive, require much
more signaling messages.

• Cost of new joining node, the arrival of a new node
affects only a limited number of existing nodes
(nodes that are in its direct transmission region). The
number of neighbors and, consequently, the
signaling overhead, depend only on the node’s
transmission range and are independent of the total
number of nodes in the system.

B. Number of nodes:
Referring to the address tree illustrated in Fig.1, the upper
bound number of addresses that could be allocated in Party
when using base B numbers with k digits for the temporary
address is given by the following equation:

1
2 3

0

11 ... (1)
1

kk
k n

n

mm m m m m
m

+

=

−+ + + + + = =
−∑

Where m = B – 1.

C. Loop-free:
At any particular routing step, the packet is never routed to a
node whose temporary address is further from the
destination’s temporary address than the current address. The
forwarding process as describe in section III will only forward
to a node whose temporary address is closer to the
destination’s address than the current node’s address. When it
fails to find such a node, it routes to its parent.
Because the prefix of the parent’s temporary address is also a
prefix of the current node’s address, it is no further from the
destination address than the current node.

V. SIMULATION RESULTS:
We evaluated Party’s performance using ns-2. Party’s results
were compared to the results of both a popular reactive routing
protocol –AODV [6] – and a popular proactive routing
protocol –DSDV [7]. For all simulations, we used the standard
values for the Lucent WaveLAN physical layer, and the IEEE

802.11 MAC layer standard with a transmission range of
250m. The duration of all the ns-2 simulations was set to 200
seconds, wherein the first 20 seconds are free of data traffic,
allowing the initial address allocation to take place and for the
network to organize itself. In order to maintain a mostly
connected topology the size of the simulation area was chosen
to keep average node degree close to 28. For the traffic we use
UDP/CBR flows, where we varied the rate and number of
flows and kept the total offered load constant at 250 Kbit/s. In
Party protocol we use decimal digits for the temporary
addresses. The other Party’s simulation parameters used in all
simulations are show in table I. We restrict the study to a static
topology.

A. Address space utilization:
We set up a series of experiments with network size varying
between 100 to 500 nodes. In these experiments the topologies
were randomly formed i.e. the position of each node in the
simulation area was randomly chosen. The simulation scenario
begins with the root node (the node with ID =0), this node
preserves the 00…0 address, and begins to transmit HELLO
message.

TABLE I: SIMULATIONS PARAMETERS

When a node in its transmission area hears the HELLO
message, it sends ADDR_ALLOCATION_REQ asking this
node for an address, and wait 200ms for a response from this
node. During this period if it receives the
ADDR_ALLOCATION_REP message, it will accept this
address and reply with ADD_ALLOCATION_ACCEPT
message, registering itself as a child of that node. In its turn it
begins to transmit HELLO messages periodically with a
period equal to 1s. If it does not receive
ADD_ALLOCATION_REP after the expiration of the waiting
time, then it will listen again for a new HELLO message.
In these experiments we study the performance of the address
allocation procedure used in Party. Fig. 3 shows the
convergence time of address allocation as the network size
increases; we mean by this, the time that will pass until last
node take an address. As expected this time will increase with
the network size, it also depends on the number of digits K
used for the temporary address, where it decreases with
increasing the number of used digits. Although the simulation
results show that after 300 nodes this is not the case for K=6
and K=8, this is due to the number of nodes that could not take
a temporary address (see Figure 4), as illustrated by the
address tree, leaf nodes could not allocate addresses for other
nodes. And since we register the time at which the last node
take an address as the convergence time, this time will reach a
saturation point, where no more nodes could take a temporary
address.

Figure 4 shows that the percentage of node that did not take a
temporary address increases as the network size and as
expected decreases with increasing the number of digits in the
temporary address. Comparing this result with the maximum
number of addresses that could be allocated in eqution (1), we
can refer the high percentage of nodes not allocated a
temporary address, to the random topology formation, where
the root node could be located at the edge of the simulation
area, and to the simulation scenario where a node try to take
an address from the first node transmit a HELLO message.

B. Routing Overhead:
In the following experiments we use 10 decimal digits for
Party temporary address i.e. K=10, and in each simulation run
we make sure that each node in the network takes a temporary
address. Here we compare Party routing overhead with that of
AODV, and DSDV, we normalized the packet size for each
protocol to that of AODV i.e. 44 bytes. For Figure 5, we
examine routing protocol overhead with respect to the number
of flows maintaining the network size at 200 nodes.
The results show that our protocol has a lower overhead
compared to the other routing protocols. AODV overhead has
an approximately linear relationship with flow count, whereas
the overhead of DSDV is unaffected by this parameter, due to
its proactive route establishment. Party overhead does not
affected by the flow count; this is due to the route
establishment procedure where no flooding is needed.
In the following experiment, we compare routing protocol
scalability with respect to network size. Where Fig. 6 shows
that Party maintains a relatively low overhead compared to the
other protocols. We can observe also that its overhead grows
linearly by a low rate with the network size. This result
emphasizes the scalability of Party protocol.

C. Throughput:
We start by studying the throughput achieved by these
protocols, using a varying number of UDP/CBR flows. Figure
7 shows that DSDV and Party remain largely unaffected as the
number of flows increases. As the number of flows increases,
AODV’s overhead eats up its initial performance advantage. A
slight decrease in throughput is expected, as inter-flow
interference will increase with increasing number of flows.
In order to get a good idea of protocol scalability with respect
to network size. We keep the number of connections fixed at
100 flows. When connection end-points are chosen randomly
and uniformly, it is natural for any protocol to see reduced
throughput with increasing network size, due to increasing
average path length, and increasing routing protocol overhead.
As observed by Figure 8, Party throughput is higher than that
for the other protocols, due to its small overhead, thus it seems
to be suitable for large networks.

VI. CONCLUSION:
We show how Party is a network layer designed for wireless
self-organizing networks, decentralized, scalable, and
independent of IP-like addressing limitations.
A small amount of information suffices to implement Party
routing, i.e., low signaling overhead is generated (only local

Parameter Value

Hello message rate 1s

Mapping registration refreshing rate 3s
Party Signaling Packet size 48 bytes

Address request waiting time 200 ms

neighborhood communication), Thus the routing table size is
O(q), where q is the number of immediate neighbors of the
node. The simulation results show that Party performs better
than the current ad hoc legacy protocols.

0

2

4

6

8

10

12

14

100 200 300 400 500

Number of nodes

Ti
m

e

K=6
K=8
K=10

Figure 3. Time needed to allocate addresses for nodes in Party.

0
5

10
15
20
25
30
35
40
45
50

100 200 300 400 500

Number of nodes

P
er

ce
nt

ag
e

K=6
K=8
K=10

Figure 4. Percentage of nodes that did not take a temporary address.

0

5000

10000

15000

20000

25000

30000

35000

10 20 50 100 250 500

flow count

O
ve

rh
ea

d(
P

ac
ke

t/s
)

AODV
Party
DSDV

Figure 5. Overhead vs. Flow Count: UDP/CBR flows, 200 Nodes.

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

50 100 200 300 400 500 600

Number of nodes

O
ve

rh
ea

d
(p

ac
ke

t/s
) AODV

DSDV
Party

Figure 6. Overhead vs. Network Size: 100 UDP/CBR flows.

0
20

40

60
80

100

120

140
160

180

10 20 50 100 250 500

flows count

th
ro

ug
hp

ut
(K

bi
t/s

)

AODV
Party
DSDV

Figure 7. Throughput vs. Flow Count: UDP/CBR flows, 200 Nodes.

0

50

100

150

200

250

300

50 100 200 300 400 500 600

Number of nodes

th
ro

ug
hp

ut
 (k

bi
t/s

)

AODV
DSDV
Party

Figure 8. Throughput vs. Network Size: 100 UDP/CBR flows.

REFERENCES
[1] Ram Ramanathan and Martha Steenstrup, “Hierarchically-organized,

multihop mobile wireless networks for quality-of-service support,”
Mobile Networks and Applications, vol. 3, no. 1, pp. 101–119, 1998.

[2] Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang, “A
wireless hierarchical routing protocol with group mobility,” in
WCNC,1999.

[3] G. Pei, M. Gerla, and X. Hong, “Lanmar: Landmark routing for
large scale wireless ad hoc networks with group mobility,” in ACM
MobiHOC’00, 2000.

[4] X. Hong, M. Gerla, G. Pei, and C. Chiang, “A group mobility model
for ad hoc wireless networks,” 1999.

[5] Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in Proceedings of the
Middleware, 2001.

[6] Perkins, “Ad hoc on demand distance vector routing,” 1997.
[7] Charles Perkins and Pravin Bhagwat, “Highly dynamic destination

sequenced distance-vector routing (DSDV) for mobile computers,” in
ACM SIGCOMM’94, 1994.

[8] David B Johnson and David A Maltz, “Dynamic source routing in ad hoc
wireless networks,” in Mobile Computing, vol. 353. Kluwer Academic
Publishers, 1996.

[9] Z. Haas, “A new routing protocol for the reconfigurable wireless
networks,” 1997.

[10] Guangyu Pei, Mario Gerla, and Tsu-Wei Chen, “Fisheye state routing:
A routing scheme for ad hoc wireless networks,” in ICC (1), 2000.

[11] Paul F. Tsuchiya, “The landmark hierarchy : A new hierarchy for routing
in very large networks,” in SIGCOMM. 1988, ACM.

[12] G. Pei, M. Gerla, and X. Hong, “Lanmar: Landmark routing for
large scale wireless ad hoc networks with group mobility,” in ACM
MobiHOC’00, 2000.

[13] Benjie Chen and Robert Morris, “L+: Scalable landmark routing and
address lookup for multi-hop wireless networks,” 2002.

[14] Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang, “A
wireless hierarchical routing protocol with group mobility,” in WCNC,
1999.

[15] Y.-B. Ko and N.H. Vaidya, “Location-aided routing (LAR) in mobile
ad hoc networks,” in ACM/IEEE MobiCom, 1998.

[16] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, “A
distance routing effect algorithm for mobility (DREAM),” in ACM/IEEE
MobiCom, 1998.

[17] Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in ACM MobiCom,
2003.

[18] L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks:
Performance evaluation and optimization,” Computer Networks, vol. 1,
1977.

[19] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “PeerNet Pushing
Peer- to- Peer down the stack,” Proceedings of International
Workshopon Peer to Peer systems, IPTPS’03, 2003.

[20] Aline C. Viana, Marcelo D. de Amorim, Serge Fdida, and Jos F.
de Rezende, “Indirect routing using distributed location information,”
ACM Mobile Networks Applications, Special Issue on Mobile and
Pervasive Computing, 2003.

[21] “FIPS 180-1, Secure Hash Standard.” U.S. Department of
commerce/NIST, National Technical Information Service, Apr. 1995.

[22] G. Al sukkar, H. Afifi, and S.-M. Senouci. Party: Pastry-Like Multi-hop
Routing Protocol for Wireless Self-Organizing Networks, in proceeding
of MCWC, September 2006.

