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   Abstract—In this paper we study a self organizing network 
architecture, Party. Party is a new routing protocol intended to 
be applied in environments with large number of nodes where the 
scalability of the routing protocol plays an important role. 
Party’s routing is unique and only depends on the current node’s 
neighborhood. Routing tables are created on the basis of the first 
hop neighborhood only. We will show the protocol performance 
with a large number of nodes in the network, and compare it to 
the legacy ad hoc routing protocols. Results show a large 
improvement in terms of overhead and throughput.   
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I. INTRODUCTION: 
   Wireless Self-Organizing Networks (SONs) are expected to 
play an important role in future communications. Such self-
organizing networks are not supposed to be underlying on an 
IP infrastructure nor they depend on IP-like hierarchical 
addressing.  
The routing protocol is a key component in the network layer, 
the current ad hoc routing protocols work well only up to a 
few hundred nodes. Most of the current research in wireless 
SONs routing protocols focus more on performance and 
power consumption related issues in relatively small networks 
and less on scalability. The main reason behind the lack of 
scalability is that these protocols rely on flat and static 
addressing. With scalability as a partial goal, some efforts 
have been made in the direction of hierarchical routing and 
clustering [1] [2] [3]. These approaches are promising, but 
they do not seem to be actively pursued. Moreover it appears 
to us as if these protocols would work well in scenarios with 
group mobility [4], which is also a common assumption 
among cluster based routing protocols. 
In this paper, we study the performance of Party [22], a new 
network layer in which the integrated routing protocol is very 
simple and depends only on node’s neighbors, each node has 
its own universal identifier (we can use as an identifier, the 
node’s IP address or its MAC address) and is assigned a 
temporary address relative to its location in the network. With 
dynamic addressing, nodes change addresses as they move, so 
their addresses have a topological meaning. 
The rest of this paper is organized as follows. In section II we 
describe the related work; Overview of Party basic operation 
is discussed in section III, Performance analysis is reported in  
section IV. Section V shows the simulation results. Finally we 
conclude with section VI. 

II. RELATED WORK: 
Several routing protocols have been proposed for wireless 
SONs especially for Ad hoc networks, most of them are IP-
based [6] [7] [8], where addresses are static and used to 
identify the nodes. The design of a routing protocol has two 
choices:  (1) either keep routing entries for every node in the 
network, or (2) resort to flooding route requests throughout the 
network upon connection setup. Neither of these alternatives 
scales well as the network size gets larger. 
In order to achieve scalability some protocols were proposed. 
In the Zone Routing Protocol (ZRP) [9] and Fisheye State 
Routing (FSR) [10], nodes are treated differently depending 
on their distance from the destination.  
In multilevel-clustering approaches such as Landmark [11], 
LANMAR [12], L+ [13], MMWN [1] and Hierarchical State 
Routing (HSR) [14], certain nodes are elected as cluster heads 
(also called Landmarks). A node’s address is defined as a 
sequence of cluster head identifiers, one per level, allowing 
the size of routing tables to be logarithmic in the size of the 
network, but easily resulting in long hierarchical addresses.  
Another way to achieve scalability is to use geographic 
location information to assist in the routing, in these protocols 
[15] [16] it is assumed that each node knows its location 
coordinates using some technologies (e.g. GPS), although they 
scale well in large network size, location information is not 
always available. Taking this in consideration a number of 
new routing protocols where invented that try to estimate node 
coordinates in a relative way without the assistant of any 
positioning system, example of these protocols NoGeo [17].  
In Area Routing [18], nodes that are close to each other in the 
network topology have similar addresses, without any explicit 
nodes hierarchy. PeerNet1 [19], Tribe [20], and Party protocol 
exploit this idea, i.e. nodes that are neighbors in the topology 
take addresses that are close to each other. PeerNet is a 
network layer where node’s address reflects its location in the 
network and are registered with the respective node global 
identifier in the distributed node lookup service, addresses are 
organized as leaves of a binary tree (called address tree), 
PeerNet routing is a recursive procedure descending through 
the address tree. In Tribe, nodes are assigned a part of a 
logical region and a relative address, the relative address of the 
node also reflects its physical location in the network, Tribe 
routing depends on the assigned regions, in Tribe the number 

                                                
1 Which is now called DART protocol. 



of entries in the node’s routing table is O(q) where q is the 
number of immediate neighbors of that node.  
Party, resembles PeerNet in the way of address allocation and 
building routing tables that have the same number of entries as 
in Tribe, where a small amount of information is sufficient to 
implement routing tables, (in contrary to PeerNet where the 
routing information passes through the whole network). Here 
each node stores information about itself and its immediate 
neighbors.  

III.  OVERVIEW OF PARTY PROTOCOL: 
Each node has a static globally known and unique identifier 
ID, Party assigns each node a unique address that changes 
with node movement to reflect its location in the network 
(temporary address). This address is used to simplify routing 
in the network. Since the address of the node changes with its 
movement, we need an additional lookup service providing the 
temporary address for a given node identifier. 
To join the network, a node establishes a physical connection 
to at least one node already in the network and requests an 
address. The neighbor node(s) answer(s) with an address. The 
joining node then “registers” its identifier together with the 
address in the distributed node lookup service. As a node 
moves, it requests and receives new addresses from its new 
neighbors. Each time the address change, the node updates its 
entry in the lookup service.  
In a typical data exchange, the sender node only needs to 
know the identifier of the receiver. The sender looks up the 
current address of the destination node using the lookup 
service. The forwarding process is done in a way similar to the 
one done in Pastry [5], one hop at a time, where each node 
forwards the message to its immediate neighbor who forwards 
the message as close as possible to the destination. If the 
destination cannot be reached, the lookup table is consulted 
along the way to find the new address of the destination. 
Party basic operation includes the following mechanisms: 

A. Address Allocation: 
Party enables nodes to allocate addresses in a local way i.e. 
without the need to contact far away nodes in the network, at 
any given time; The addresses are organized as a tree. We call 
this the address tree, see Fig. 1.   
Let us assume that addresses are k digits decimal1 numbers, 

1 0, ,ka a− … , the first node to exist in the network takes the all 

zeroes address 00. . .0, call it the root node, as nodes arrive in 
the neighborhood of this node (i.e. they are in the transmission 
range of it), they contact it to obtain an address (call these 
nodes level 1 nodes). The root node controls the first digit 
(leftmost digit) of the address, where it gives the first arriving 
node address 100…0, the second arriving node 200…0 and so 
on up to 900…0. These first level nodes control the second 
digit (from left) in the address, so when nodes connect to any 
of these nodes and asks for an address, they fix the first digit 
as their address and change the second digit according to node 
arriving sequence. 

                                                
1 We can use hexadecimal numbers or any base numbers. 

The second level nodes take control of the third digit and so 
on. Fig. 1 shows an example of an address tree with three 
digits addresses, for k = 3 digits, the entire address space can 
be represented by xxx, where x Є {0, 1,…, 9}, nodes in level l 
subtree are the children of the node in level l-1. The leaves do 
not take control of addresses since address space reaches its 
limit.  Fig. 2 shows an example of a network topology with 
Party protocol in use. 

B. The Routing Procedure: 
Address allocation algorithm in Party simplifies the routing 
procedure. Routing is performed on a hop by hop basis. 
Having obtained its temporary address Ri from one of its 
neighbors (we call this neighbor the parent neighbor Pi) 
according to the parent selection mechanism as explained in 
[22], the new node i also learns the temporary addresses of its 
immediate neighbors through the periodically exchanged hello 
messages. 

 

Figure 1.  Address tree with three digits decimal address space. 
 

This neighborhood information will compose its routing table. 
In Party, a node routes a message by simply forwarding to the 
neighbor whose address is the closest to the searched 
temporary address of the destination until the messages 
reaches its target.  
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Figure 2.  Network with three digits address space. Numbers in the circles are 

nodes identifiers; numbers beside the circles are nodes addresses.  
If the node cannot find in its routing table such a node with a 
longer shared prefix matching, it simply forwards the message 
to its parent and so on until the message reaches its 
destination. Fig. 2 shows an example of how the routing 
algorithm works, here node 7 with R7 = 220 wants to send for 
the destination 14 with R14 = 311. Node 7 finds in its routing 
table that node 16 has a temporary address that matches the 
destination temporary address in the first digit, so it forwards 
the message to this neighbor, in its turn node 16 forwards this 
message to node 15 which is its parent neighbor since it does 



not have in it routing table any node that has a longer prefix 
matching with the destination node’s temporary address. Node 
15 forward the message to node 11 which has a temporary 
address that matches the destination’s temporary address in 
two digits. Finally, this node forwards the message to node 14 
which is the destination node. 

C. Address Registration Procedure: 
After joining the network, the new node i has a temporary 
address Ri. The next step is to identify the node which will be 
responsible for storing its mapping information, i.e. the 
rendez-vous node of node i. The operation of registering the 
temporary address in the corresponding rendez-vous node is 
mandatory for every arriving node. 
By using any well-known function like SHA-1 [21], each node 
hashes its identifier, ID, and obtains an m-bit number. This 
number is then translated using certain function into a 
temporary address Rr, this address is used to find the rendez-
vous node of node i as the following: Node i forwards a 
registration request message using Rr as a destination address. 
This request will be forwarded until it reaches the node having 
temporary address that has the longest prefix matching with 
Rr. 
This node is the one responsible for storing the mapping 
information of node i; (IDi, Ri, Pi). This mapping information 
will be refreshed periodically, as long as node i maintains its 
current position in the network. Also every node in the path to 
the rendez-vous node will store this mapping in its cache for a 
certain period of time. Also to avoid node failure each node 
could selects more than one node to be its rendez-vous node, 
where it will store its mapping information simultaneously in 
all of these nodes.    

D. Node lookup Procedure: 
Since the ID of a node is not its address, Party provides a 
distributed node lookup service for looking up a temporary 
address given an identifier. Intuitively, each identifier is 
mapped through some function to a single address and the 
node that currently controls that address is required to store 
the mapping and responding to requests for this mapping. 
The source node applies the globally known hash function on 
the destination node IDd, so it will get a temporary address Rd, 
this temporary address is the one used to find the rendez-vous 
node of the destination. 
To find the rendez-vous node, the source forwards a mapping 
request message using Rd as a destination address, applying 
the same routing procedure in section B, each time the 
message reaches a new node, this node will check its cache for 
a fresh mapping information, if it finds this mapping, then it 
will respond with mapping reply message to the source node, 
otherwise it forwards the request to its neighbor whose address 
is the closest to the searched temporary address Rd. If no such 
cached information available in the path, then the request will 
be forwarded until it reaches the node with the longest prefix 
matching with Rd, this node is the rendez-vous node of the 
destination. This rendez-vous node will respond with the 
mapping information for the desired destination node. In the 
backward path from the rendez-vous node to the source node, 

this mapping information will be cached for a certain time in 
each node on the path. This cached information is used in later 
mapping requests by other nodes for the same mapping 
information.      

IV. PERFORMANCE ANALYSIS: 

A. Scalability: 
This scalability comes from the following new features: 

• Size of the routing table, where each node has a 
routing table of size O(q), where q is the number of 
immediate neighbors of the node. Recall that in a 
classical proactive protocol the table size depends on 
the network size n; i.e. routing table size O(n). 

 

• Signaling traffic needed to implement and maintain 
the routing table, routing table entries are the 
immediate neighbors and the only signaling traffic 
needed is the hello signals between neighbors that 
used to inform the neighborhood nodes that the node 
is still alive and still in its position. Classical ad hoc 
protocols, both proactive and reactive, require much 
more signaling messages. 

 

• Cost of new joining node, the arrival of a new node 
affects only a limited number of existing nodes 
(nodes that are in its direct transmission region). The 
number of neighbors and, consequently, the 
signaling overhead, depend only on the node’s 
transmission range and are independent of the total 
number of nodes in the system.  

B. Number of nodes: 
Referring to the address tree illustrated in Fig.1, the upper 
bound number of addresses that could be allocated in Party 
when using base B numbers with k digits for the temporary 
address is given by the following equation: 
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Where m = B – 1. 

C. Loop-free: 
At any particular routing step, the packet is never routed to a 
node whose temporary address is further from the 
destination’s temporary address than the current address. The 
forwarding process as describe in section III will only forward 
to a node whose temporary address is closer to the 
destination’s address than the current node’s address. When it 
fails to find such a node, it routes to its parent. 
Because the prefix of the parent’s temporary address is also a 
prefix of the current node’s address, it is no further from the 
destination address than the current node. 

V. SIMULATION RESULTS: 
We evaluated Party’s performance using ns-2. Party’s results 
were compared to the results of both a popular reactive routing 
protocol –AODV [6] – and a popular proactive routing 
protocol –DSDV [7]. For all simulations, we used the standard 
values for the Lucent WaveLAN physical layer, and the IEEE 



802.11 MAC layer standard with a transmission range of 
250m. The duration of all the ns-2 simulations was set to 200 
seconds, wherein the first 20 seconds are free of data traffic, 
allowing the initial address allocation to take place and for the 
network to organize itself. In order to maintain a mostly 
connected topology the size of the simulation area was chosen 
to keep average node degree close to 28. For the traffic we use 
UDP/CBR flows, where we varied the rate and number of 
flows and kept the total offered load constant at 250 Kbit/s.  In 
Party protocol we use decimal digits for the temporary 
addresses. The other Party’s simulation parameters used in all 
simulations are show in table I. We restrict the study to a static 
topology. 

A. Address space utilization: 
We set up a series of experiments with network size varying 
between 100 to 500 nodes. In these experiments the topologies 
were randomly formed i.e. the position of each node in the 
simulation area was randomly chosen. The simulation scenario 
begins with the root node (the node with ID =0), this node 
preserves the 00…0 address, and begins to transmit HELLO 
message. 

TABLE I:    SIMULATIONS PARAMETERS 
 
 
 
 
 
 
 
When a node in its transmission area hears the HELLO 
message, it sends ADDR_ALLOCATION_REQ asking this 
node for an address, and wait 200ms for a response from this 
node. During this period if it receives the 
ADDR_ALLOCATION_REP message, it will accept this 
address and reply with ADD_ALLOCATION_ACCEPT 
message, registering itself as a child of that node. In its turn it 
begins to transmit HELLO messages periodically with a 
period equal to 1s. If it does not receive 
ADD_ALLOCATION_REP after the expiration of the waiting 
time, then it will listen again for a new HELLO message.  
In these experiments we study the performance of the address 
allocation procedure used in Party. Fig. 3 shows the 
convergence time of address allocation as the network size 
increases; we mean by this, the time that will pass until last 
node take an address. As expected this time will increase with 
the network size, it also depends on the number of digits K 
used for the temporary address, where it decreases with 
increasing the number of used digits. Although the simulation 
results show that after 300 nodes this is not the case for K=6 
and K=8, this is due to the number of nodes that could not take 
a temporary address (see Figure 4), as illustrated by the 
address tree, leaf nodes could not allocate addresses for other 
nodes. And since we register the time at which the last node 
take an address as the convergence time, this time will reach a 
saturation point, where no more nodes could take a temporary 
address. 

Figure 4 shows that the percentage of node that did not take a 
temporary address increases as the network size and as 
expected decreases with increasing the number of digits in the 
temporary address. Comparing this result with the maximum 
number of addresses that could be allocated in eqution (1), we 
can refer the high percentage of nodes not allocated a 
temporary address, to the random topology formation, where 
the root node could be located at the edge of the simulation 
area, and to the simulation scenario where a node try to take 
an address from the first node transmit a HELLO message.   

B. Routing Overhead: 
In the following experiments we use 10 decimal digits for 
Party temporary address i.e. K=10, and in each simulation run 
we make sure that each node in the network takes a temporary 
address. Here we compare Party routing overhead with that of 
AODV, and DSDV, we normalized the packet size for each 
protocol to that of AODV i.e. 44 bytes. For Figure 5, we 
examine routing protocol overhead with respect to the number 
of flows maintaining the network size at 200 nodes. 
The results show that our protocol has a lower overhead 
compared to the other routing protocols. AODV overhead has 
an approximately linear relationship with flow count, whereas 
the overhead of DSDV is unaffected by this parameter, due to 
its proactive route establishment. Party overhead does not 
affected by the flow count; this is due to the route 
establishment procedure where no flooding is needed. 
In the following experiment, we compare routing protocol 
scalability with respect to network size. Where Fig. 6 shows 
that Party maintains a relatively low overhead compared to the 
other protocols. We can observe also that its overhead grows 
linearly by a low rate with the network size. This result 
emphasizes the scalability of Party protocol. 

C. Throughput: 
We start by studying the throughput achieved by these 
protocols, using a varying number of UDP/CBR flows. Figure 
7 shows that DSDV and Party remain largely unaffected as the 
number of flows increases. As the number of flows increases, 
AODV’s overhead eats up its initial performance advantage. A 
slight decrease in throughput is expected, as inter-flow 
interference will increase with increasing number of flows. 
In order to get a good idea of protocol scalability with respect 
to network size. We keep the number of connections fixed at 
100 flows. When connection end-points are chosen randomly 
and uniformly, it is natural for any protocol to see reduced 
throughput with increasing network size, due to increasing 
average path length, and increasing routing protocol overhead. 
As observed by Figure 8, Party throughput is higher than that 
for the other protocols, due to its small overhead, thus it seems 
to be suitable for large networks. 

VI. CONCLUSION: 
We show how Party is a network layer designed for wireless 
self-organizing networks, decentralized, scalable, and 
independent of IP-like addressing limitations.  
A small amount of information suffices to implement Party 
routing, i.e., low signaling overhead is generated (only local 

Parameter Value 

Hello message rate 1s 

Mapping registration refreshing rate 3s 
Party Signaling Packet size  48 bytes 

Address request waiting time 200 ms 



neighborhood communication), Thus the routing table size is 
O(q), where q is the number of immediate neighbors of the 
node. The simulation results show that Party performs better 
than the current ad hoc legacy protocols. 
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Figure 3.  Time needed to allocate addresses for nodes in Party. 
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Figure 4.  Percentage of nodes that did not take a temporary address. 
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Figure 5.  Overhead vs. Flow Count: UDP/CBR flows, 200 Nodes. 
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Figure 6.  Overhead vs. Network Size: 100 UDP/CBR flows. 
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Figure 7.  Throughput vs. Flow Count: UDP/CBR flows, 200 Nodes. 

0

50

100

150

200

250

300

50 100 200 300 400 500 600

Number of nodes

th
ro

ug
hp

ut
 (k

bi
t/s

)

AODV
DSDV
Party

 
Figure 8.  Throughput vs. Network Size: 100 UDP/CBR flows. 
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