
>

1

TCP Computational Energy Cost within Wireless

Mobile Ad Hoc Network

Alaa Seddik-Ghaleb

Networks & Multimedia Systems
Research Group (LRSM), ENSIIE
1 square de la résistance, 91025 Evry,

CEDEX - France.

seddik@ensiie.fr

Yacine Ghamri-Doudane

Networks & Multimedia Systems
Research Group (LRSM), ENSIIE
1 square de la résistance, 91025 Evry,

CEDEX - France.

ghamri@ensiie.fr

Sidi-Mohammed Senouci

France Telecom R&D
2 Av. Pierre Marzin,

22307, Lannion, France

sidimohammed.senouci
@orange-ft.com

Abstract— In this paper, we present the results from a detailed

energy measurement study of different TCP variants when used

in Mobile Ad hoc Network environments. More precisely, we

focus on the node-level cost of the TCP protocol; also know as the

computational energy cost. The studied TCP variants are TCP

New-Reno, Vegas, SACK, and Westwood. In our analysis, we

draw a breakdown of the energy cost of the main congestion

control algorithm (i.e. slow start, fast retransmit/fast recovery,

and congestion avoidance) used by these TCP variants. The

computational energy cost is studied using a hybrid approach,

simulation/emulation, using the SEDLANE emulation tool. This

study takes into consideration different data packet loss models

(congestion, link loss, wireless signal loss, interference) within

such environments when different ad hoc routing protocols

(reactive and proactive) are used.

The performed study gives a set of results that are of high

interest for future improvements of TCP in MANETs. Among the

obtained results, we show that the computational energy cost of

TCP varies according to the type of data packet loss model it

comes through: network congestion, interference, link loss, or

signal loss. The results demonstrate that the link loss scenario is

the most severe situation for TCP connections to face. In addition

to that, we show that the Fast Retransmit/Fast Recovery phase

has mush less energy cost than both Slow Start and Congestion

Avoidance phases, due to the fact that it sends more TCP data

bytes in a shorter period of time. Finally, the computational

energy cost is quantified and compared to the TCP end to end

performances for each TCP variant showing the link between

both.

Index Terms—TCP, computational energy cost, emulation,

wireless mobile ad hoc networks.

I. INTRODUCTION

CP is the most popular reliable transport control protocol.

It is today supported by almost all Internet applications.

However, TCP does not always have the best

performances. In order to identify its performance limitation

and thus to be able to correct them, it is important to study its

behaviour, categorize its performance metrics and quantify

them in each of the different environment where TCP can be

used. In this paper, we target a particular, but still important,

performance metric and one importance-increasing

environment in which TCP is targeted to be used. More

precisely, we are interested in studying the computational

energy cost of TCP when this one is used in Mobile Ad hoc

Networks (MANETs). The major motivation behind this study

resides in the fact that mobile devices are battery-operated and

it is important to optimize the energy-consumed by such

devices in order to increase their lifetime. Prior to any

improvement, there is a need to better understand how and

where energy is consumed in the communications pipeline.

The computational energy cost of TCP is the energy spent

within the node and its CPU unit in order to realize the various

copy operations, compute checksums, respond to timeouts and

triple duplicate ACKs, adjust timers, and perform the other

book keeping operations. This cost is thus linked to the

execution of the different TCP congestion control algorithms

(Slow-Start, Fast Retransmit/Fast Recovery, and Congestion

Avoidance). One should finally note that this work is

complementary to the different researches targeting the

evaluation of the radio-related energy cost of TCP variants

(i.e. the energy consumption due to the transmission,

retransmission and forwarding of TCP segments by ad hoc

nodes) [1][2][3].

In this work, the four major TCP variants, namely TCP

New-Reno, Vegas, SACK and Westwood, are considered. In

order to measure the computational energy cost while

executing their different congestion control algorithms, we

implement different data packet loss models and we take into

consideration different types of ad hoc routing protocols.

Measuring the node-level energy consumption is realized using

a realistic test-bed configuration. This configuration should

introduce the effect of a real wireless mobile ad hoc network

environment (i.e. realistic data packet delays and losses). In

this paper, we introduce such effects using a MANET delay

and packet-loss emulation tool called SEDLANE [4] (Simple

Emulation of Delays and Losses for Ad hoc Networks

Environment). This tool uses NS-2 simulation results in order

to generate realistic data packet delays and losses in MANETs.

The use of such a hybrid approach makes the evaluation

approach taking advantage of each of these approaches:

simulation and test-bed experiments. Hence, thanks to

SEDLANE, the effect of different data packet loss models

(congestion, interference, link loss, and signal loss) and ad hoc

routing protocols (reactive vs. proactive) are introduced.

Our study can have multiple benefits. The main foreseen

benefits that motivated our work are: (1) to enable the

understanding of the energy consumed by TCP at the CPU

T

>

2

level and thus to facilitate the future development of new TCP

congestion control algorithms for MANETs that are energy-

efficient; and (2) to give a methodology, that extends the one

defined by [5], to others that wants to evaluate the TCP energy

cost in MANET-related specific scenario of use. The other

benefits of such studies [6] are also: (3) to give to other

researchers working on analytical modelling of TCP a set of

results to develop energy models for TCP congestion control

algorithms; and (4) to allow the incorporation of our node-

level energy models into any network simulators in order to

obtain the overall energy cost (computational + radio) of TCP

connections (Currently, network simulators only includes the

radio energy cost).

The remainder of this paper is organized as follows: after

presenting the related work in Section II, Section III gives an

overview of the SEDLANE emulation tool. It is followed by

the description of the implemented test-bed and the

methodology used to measure the node-level energy

consumption. Section V introduces the results of our work.

Finally, we summarize the main results and give some ideas

for improving TCP performances in mobile ad hoc networks in

Section VI.

II. RELATED WORK

One of the earliest work analyzing the processing overhead

of TCP was presented in [6]. The goal of this work was to

analyse the effect of TCP processing on the end-to-end

connection throughput. The study implied both the sender and

receiver sides. The breakdown of the processing cost in both

the sender and receiver sides gave insightful results and led to

the development of a variety of techniques to enhance TCP

efficiency [5]. Most of these improvements were operating

system or hardware related.

Fifteen years later and with the advance of mobile

computing devices, few researches started to look at the

evaluation of the node-level energy consumption by wireless

devices. Among these, some studies used realistic test-beds [5]

[7] in order to get the energy consumption of TCP. More

precisely, the authors in [7] has looked at the energy

consumption of various wireless interface cards used by ad hoc

nodes; while [5] concentrated on the evaluation of the

operating system and hardware level operations needed by

TCP. Suggestions on how to improve the interactions between

TCP and the underlying device platform had then been drawn.

In our current study, we go a step further as we are more

interested on TCP congestion control algorithms as a whole.

Indeed, our target is to analyse their computational energy cost

in order to identify potential improvements for TCP when it is

used by mobile devices in general and by MANETs in

particular.

The advantage of using a test-bed configuration is to get the

energy consumed at the node level (i.e. within the CPU unit)

which is not straightforward to obtain when using simulations.

In the mentioned studies [5][7], the authors implemented a

test-bed configuration in order to compute the TCP energy

consumption within wireless environments. Both studies used

Dummynet [8] to introduce both data packet delays and losses

in order to emulate the effect of a wireless environment.

Dummynet parameters were randomly selected. This is not

realistic as data packet losses are not random neither in

wireless network in general nor in MANETs in particular.

Furthermore, the delays are correlated and dependant to the

effect of the wireless environment and the protocol suite. In

our test-bed implementation, instead of using random data

packet delay and loss values, we exploit the realism of a new

wireless ad hoc network emulator that is called SEDLANE

[54]. SEDLANE allows us to introduce different data packet

losses and delay effects that can appear within ad hoc networks

environment (congestion, interference, link loss, and signal

loss).

III. OVERVIEW OF SEDLANE

As depicted in Figure 1, the main idea of SEDLANE [4] is a

hybrid evaluation approach that takes benefit from simulation

results in order to enhance real test-bed experiments. It allows

configuring Dummynet [8] pipes (i.e. defining packet loss and

delay rules) through NS-2 (Network Simulator-2) [9] trace

files. More precisely, SEDLANE uses NS-2 TCP trace file to

identify the classes of packets by gathering together the

packets that have similar RTT values. Then, SEDLANE

dedicates one pipe or communication channel for each group

of packets. Hence, according to the identified packet classes,

delay values (i.e. RTT/2 on each way) and loss rates are

distributed among classes, SEDLANE dynamically generates

the Dummynet rules to be applied on the packets. This way,

we control the different ad hoc network parameters using

simulation approach making our experiments more realistic

compared to those previously used (i.e. in terms of data packet

delays and losses).

Figure 1. SEDLANE Operations

IV. TCP COMPUTATIONAL ENERGY CONSUMPTION

A. Test-bed Configuration

The methodology used in our energy consumption

measurements test-bed extends the one previously used in [5]

in which we add the use of SEDLANE.

Our test-bed configuration (as shown in Figure 2), is

composed of a DELL LATITUDE D410 laptop as a sender

point while the receiver end side is a DELL OPTIPLEX GX

520 Personal Computer (PC). Between the communicating

nodes we implement SEDLANE (on a second DELL

OPTIPLEX GX 520 PC), to get the effect of a wireless ad hoc

network environment between the sender and receiver sides.

The laptop communicates with the PC over a wireless link

channel. In order to calculate TCP energy consumption within

>

3

the CPU unit: we measure both (i) the total energy

consumption within the laptop, and (ii) the energy consumed

within the wireless card for transmission and reception. The

difference between the two measured values will be the

computational energy consumption. Obviously, the

measurements are taken at the TCP sender side.

In order to match this computational energy consumption to

the TCP operations, we use a minimal Linux distribution in

which we turn off the display, the power manager and the x-

server in order to minimize the effect of any other running

applications on the measured current. The reason for turning

off power management as described in [5] is the fact that it

helps determining better the current draw that corresponds to

TCP code execution. Last but not least, all the

processes/daemons that are not necessary to TCP operations

are simply removed from the Linux distribution making it

minimal. By taking all these precautions, we ensured that the

remaining energy consumption is due to TCP congestion

control algorithms execution and timer adjustments.

Figure 2. TCP Computational Energy Cost Measurements Test-bed

 Energy consumption is determined by measuring the input

voltage and current draw using two Agilent 34401A digital

multi-meters that have a resolution of one millisecond. We do

not use the laptop’s battery because avoiding the use of battery

allows for a more steady voltage to be supplied to the device

[10]. In order to directly measure the current and voltage draw

of the wireless 802.11b PCMCIA card, the card was attached

to a Sycard PCCextend 140A CardBus Extender [11] that in

turn attaches to the PCMCIA slot in the laptop. This way, we

can separately but simultaneously measure the current draw of

the laptop and the current draw of the wireless 802.11b

PCMCIA card
1
.

B. Measurements Scenarios

In order to have a wide range of results that help better

understanding the behaviour of TCP in front of different data

packet loss models, we run our measurements using different

packet loss models. In the mean time, NS-2 simulation traces

are obtained using different ad hoc routing protocols (AODV,

DSR, DSDV, OLSR), thus to get the effect of such routing

protocols on TCP performances and in turn its computational

1 Sycard PCCextend 140 CardBus extender card is a debug tool for

development and test of PC cards and hosts.

energy cost. The models are defined to be run using NS-2.

Then the TCP trace files are used by SEDLANE in order to

provide the loss and delay effects (as described in Section III)

within our realistic test-bed implementation. Our study is

categorized by the nature of data packet loss models: (i)

network congestion, (ii) interference, (iii) link loss, and (iv)

signal loss.

1) Creating Network Congestions: In this packet-loss model,

we create a congested node at the middle of a five-node

topology by generating three TCP data traffic flows that must

pass by this intermediate node to reach the other

communicating end (Figure 3). One should also note that,

different levels of data congestion can be generated by

controlling the number of TCP data flows crossing this

particular network node at a certain time.

Figure 3. Creating network congestions

2) Interference Between Neighboring Nodes: In this case,

two TCP connections are on-going in parallel. The main TCP

connection (TCP data flow 1 in Figure 4) is disturbed by the

interferences generated by the second TCP connection (TCP

data flow 2 in Figure 4). Indeed, the node acting as forwarder

for the main TCP connection is placed within the interference

range of the second TCP connection sender. So, this situation

creates interference and thus data packet drop.

3) Link Loss and Communication Route Changes: In this

model we force TCP to change its communication path by

shutting down the intermediate node between the

communicating end points. In addition, we imply routes with

different number of hops (Figure 5). Thus, each time TCP

changes the communication route, the characteristics of the

path between the communicating nodes change. It is obvious

that the choice and the establishment delay of the new route

will be dependant on the implemented ad hoc routing protocol.

Packet losses and delay changes will also be implied by the

link loss and the new chosen route.

4) Signal Loss: this scenario illustrates the situation where

the wireless signal is not stable. The communicating nodes

loose the connection due to signal loss then they resume the

communication when the signal comes back. Signal losses are

generated by moving one of the intermediate nodes out of the

radio range of its connection neighbour (Figure 6).

>

4

n4

TCP data flow_1

TCP data flow_2

> 250 m

200m200m

< 500 m
> 550m> 550m

Interference

Figure 4. Interference Model

Figure 5. Link Failure Model

Figure 6. Signal loss Model

V. TEST-BED RESULTS

Contrarily to previous studies that concentrated on the

operating system, hardware and device-level energy

consumption due to TCP, the objective of our analysis is to

analyse the energy cost of each TCP function and variant in

order to facilitate improving their behaviour in MANETs. So,

in the following we first analyse the computational energy cost

of the main TCP functions: slow-start, congestion avoidance

and fast recovery/fast retransmit. Then, a comparison of the

different TCP variants in terms of computational energy cost is

made. This one is realized according to the different data

packet loss model: network congestion, interference, link loss,

or signal loss. For each TCP variant, the computational energy

cost is quantified and compared to the end to end

performances. Finally, we identify and briefly discuss a set of

design features that must have a new TCP variant to be energy

and resource-efficient while used in MANETs.

A. TCP Functions Computational Energy Cost

 In order to get the energy consumption of the main TCP

functions (Slow-start, Fast Retransmit/Fast Recovery, and

Congestion Avoidance), we use log files at the sender side to

log the start and end times of each TCP function. Then, we use

this information to match the energy consumption with each

process by using the energy consumption measurement record.

0

0,5

1

1,5

2

2,5

Slow Start Fast Rex/Rec CA

TCP Functions Computational Energy Cost (joules/sec)

Figure 7. TCP Computational Energy Cost (joule/sec)

The results show that the computational energy cost of the

Fast Retransmit/Fast Recovery phase is extremely high

compared to that of both the Slow Start and Congestion

Avoidance phases (Figure 7). Indeed, Figure 7 shows that the

energy consumption is almost doubled. However, this is

mitigated when we compare the energy consumption according

to the amount of data sent by TCP (Figure 8). This is due to

the fact that the TCP Fast Retransmit/Fast Recovery process

consumes an important amount of energy when triggered but it

does so for a short period of time during which it may send

several TCP segments on one burst. This leads to a

continuously high computational overhead while in the slow-

start and congestion phases the computational overhead is not

continous (backoff). Indeed, the Fast Retransmit/Fast

Recovery phase resumes the data transmission after data

packet loss without minimizing data transmission rate to

minimum which is the case in Slow Start phase. So, the trade-

of energy-cost/data sent remains low in the Slow-Start phase.

For its part, the Congestion Avoidance process has an

acceptable trade-of between energy-cost and data sent (Figure

9). Indeed, during this phase, TCP is assumed to be close to its

optimal throughput value. During this phase, TCP increases its

transmission rate by one segment each RTT. It has a regular

throughput and computational overhead that are lower than the

one of Fast Retransmit/fast Recovery phase (Figures 7 and 9).

This leads to higher energy consumption per sent byte in this

phase compared to Fast Retransmit/Fast Recovery phase

(Figure 9).

>

5

0,00E+00

2,00E-05

4,00E-05

6,00E-05

8,00E-05

1,00E-04

Slow Start Fast Rex/Rec CA

TCP Functions Computational Energy Cost

(joules/sec/byte)

Figure 8. TCP Energy Cost (joule/sec/sent byte)

0

10000

20000

30000

40000

50000

60000

Slow Start Fast Rex/Rec CA

Data bytes transmitted (bytes)

Figure 9. Data bytes transmitted/TCP function

Figure 10 shows an example of TCP New Reno

computational energy cost while facing packet losses due to

network congestions. It can be obviously seen from the

Figure that, the computational energy cost of the Fast

Retransmit/Fast Recovery phase is higher than that of both

Slow Start and Congestion Avoidance phases for the

reasons mentioned above.

Figure 10. TCP NewReno computational energy cost example

(network congestion case)

B. Computational Energy Cost of TCP Variants

This section aims at comparing the main TCP variants

(NewReno, SACK, Vegas, Westwood) in front of the different

packet loss models they can face in ad hoc networks: network

congestion, interferences, link loss, and signal loss. As the two

later may implies the triggering of the ad hoc routing protocol

to re-establish the network connection, the comparative study

will be made according to different ad hoc routing protocols.

Contrarily, the two former are agnostic from the ad hoc routing

protocol.

1) Analysing the Effect of Network Congestion and

Interferences

In order to isolate the effect of network congestion and

interferences from the other packet losses raisons, we used a

static ad hoc network without route changes. In this section,

we choose to use the Ad-hoc On-demand Distance Vector

(AODV) [12] as ad hoc routing protocol. AODV triggers a

route discovery only when the sender needs to send data to the

destination. The ad hoc routing protocol choice in a static ad

hoc network has no impact on the performances of the ongoing

TCP connexions.

a. Effects of Network Congestion

The results demonstrate that TCP Vegas has the least number

of TCP segments lost (almost no loss) among all the other

variants (Figure 11). This is due to the fact that TCP Vegas is

a variant that tries to avoid congestions. In order to achieve

this, TCP Vegas calculates and modifies its TCP transmission

parameters with each received acknowledgement (ACK).

However, this reliability costs a lot in terms of processing and

storage which in turn can be translated into a high

computational energy cost compared to all the other studied

variants (Figure 12).

On the other hand, we notice that TCP Westwood has better

performance in terms of computational energy cost because it

modifies its transmission parameters only when there is a data

packet loss over the connection and not continuously as in

TCP Vegas. This implies less computational overhead in spite

of the increased number of retransmission compared to TCP

Vegas. We also remark that TCP Westwood and New Reno

have almost the same performances in terms of energy

consumption per sent byte (Figure 12) even if the loss ratio is

higher with TCP New Reno (Figure 11). From that we can

conclude that the light computational cost (i.e. the one due to

Fast Recovery/Fast retransmit process) of resending packets by

TCP New Reno is neutralized by the computational overhead

introduced by TCP Westwood (i.e. loss analysis to identify the

packet loss cause).

Finally, one should note that even that TCP SACK has the

ability to resend the lost data packets faster than TCP New

Reno due to the Selective ACK option, Figure 12 demonstrates

that the cost of SACK processing and storage (to extract the

numbers of lost data packets at the sender side) is high in most

cases, especially when the number of lost data packets is

important as in network congestion cases.

b. Effect of Traffic Interference

The results show that the number of data bytes lost due to

traffic interference is higher than that due to network

congestion (Figures 13 and 11). This result can be explained

by the fact that TCP uses congestion control algorithms,

meaning that TCP has the ability to better deal with network

congestion conditions than traffic interference ones. The

misbehavior of TCP in front of data packet losses due to

interference leads to more computational energy cost. This

comput_energy (joules)

0,000

0,005

0,010

0,015

0,020

0,025

0,030

1
0

,6
1

8
7

1
0

,6
5

4
7

1
0

,6
9

0
6

1
0

,7
2

6
6

1
0

,7
6

2
6

1
0

,7
9

8
6

1
0

,8
3

4
5

1
0

,8
7

0
5

1
0

,9
0

6
5

1
0

,9
4

2
4

1
0

,9
7

8
4

1
1

,0
1

4
3

1
1

,0
5

0
0

1
1

,0
8

5
7

1
1

,1
2

1
4

1
1

,1
5

7
1

1
1

,1
9

2
9

1
1

,2
2

8
6

1
1

,2
6

4
3

Congestion Avoidance

Slow Start FRex/FRec

>

6

result can be verified by comparing both Figures 12 and 14.

Referring to Figure 14 we can recognize that TCP Vegas has

the worst performance in terms of computational energy cost

compared to the other studied TCP variants. TCP Vegas

depends on measured RTT values to adjust its performance

parameters. In the case of traffic interference, measured RTT

values do not change significantly, and then TCP Vegas does

not recognize that there is a problem over the communication

path and keeps increasing its data transmission rate normally

which leads to more traffic interference over the connection.

More traffic interference leads to more TCP data packet

losses and higher computational energy cost. This important

number of packet losses and retransmissions leads to more

computations which has a high impact in the case of TCP

Vegas. Even that TCP Westwood has the lowest loss ratio

compared to other TCP variants, its computational energy

consumption is higher than that of both TCP New Reno and

TCP SACK. This is due to the complexity of the algorithms

used by TCP Westwood and their continuous triggering by

packet losses (i.e. re-calculates and modifies its data

transmission rate after each data packet loss). Note that in

front of congestions, TCP Westwood has the same behavior

as TCP New Reno while in front of losses due to wireless

effects its behavior is more complex.

Surprisingly, we found that TCP New Reno and TCP SACK

have almost the same performance in terms of computational

energy cost. Although that the number of retransmitted data

with TCP SACK is less than that in TCP New Reno, the

processing overhead of TCP SACK neutralizes the

advantages of the use of Selective acknowledgements used.

Loss Ratio (Congestion, AODV)

0,00%

0,10%

0,20%

0,30%

0,40%

0,50%

New Reno SACK Vegas Westwood

%
 (

lo
s
t

d
a
ta

/s
e
n

t
d

a
ta

)
b

y
te

s

Figure 11. TCP Loss Ratio (network congestion model)

TCP Computational Energy Cost using AODV

(Congestion)

0,E+00

1,E-07

2,E-07

3,E-07

4,E-07

5,E-07

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l

e
n

e
rg

y

Figure 12. TCP Energy Cost (joule/sec/sent byte)

Loss Ratio (Interference, AODV)

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

New Reno SACK Vegas Westwood

%
 (

lo
s
t

d
a
ta

/s
e
n

t
d

a
ta

)
b

y
te

s

Figure 13. TCP Loss Ratio (interference model)

TCP Computational Energy Cost using AODV

(Interference)

0,E+00

2,E-07

4,E-07

6,E-07

8,E-07

1,E-06

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l

e
n

e
rg

y

Figure 14. TCP Energy Cost (joule/sec/sent byte)

2) Analysing the Effect of Link and Signal Losses

In mobile wireless ad hoc network, it is obvious that the nodes

might have broken communication paths between the

communicating end points (due to mobility or depletion of

nodes’ batteries). In addition, loosing the radio signal for short

periods might be considered as another reason to get

disconnected temporarily from the other communicating end.

Signal loss case could be due to geographical obstacles such as

high buildings or weather conditions such as raining.. The

above situations result in data packet losses over the TCP

connections.

The choice of the ad hoc routing protocol algorithm is

important from two points of view: (i) its robustness to recover

from a link failure, (ii) the overhead and frequency of its

routing information update messages which might result in a

congestion or traffic interference over the network links. For

example, the overhead of ad hoc routing update messages

could aggravate the congestion situation over the TCP

connection. This leads to more congestion control actions

taken to recover from the packet losses.
Ad hoc routing protocol Start-up time (sec) Route recovery (sec)

AODV ≈ 0.03 ≈ 1

DSDV ≈ 90 ≈ 31

DSR ≈ 0.07 ≈ 0.2

OLSR ≈ 6 ≈ 7

Table 1. Comparative study of ad hoc routing protocols

As our objective is to analyse the effect of link loss and signal

loss on the TCP variants performances while in MANETs

using different ad hoc routing protocols, let us first recall the

main performances of these routing protocols.

>

7

Table 1 discusses the start-up time, i.e. the time needed by

the ad hoc routing protocol to build up its routing information

table in order to start communicating, and the route recovery

time of each of the four main ad hoc routing protocols: AODV

[12], the Dynamic Source Routing (DSR) [13], the

Destination-Sequenced Distance Vector (DSDV) [14], and the

Optimizes Link State Routing (OLSR) [15]. The figures

depicted in Table 1 allows us to recall that in reactive

protocols (AODV, DSR), the routing protocol triggers its route

discovery process only when there is data to send towards the

destination or when a used route is broken. Contrarily,

Proactive protocols (DSDV, OLSR) needs longer time to build

their routing table and also to recover from a route loss. This is

due to the fact that it makes it for the whole network prior to

any communication request is triggered.

a. Effects of Link Loss

Figure 15 shows that the computational energy cost of most

TCP variants increases compared to the above two studied

scenarios. This is an expected observation because TCP as it is

nowadays was not designed to cope with network link failures.

In network link failure situations, we must expect high number

of route re-computations. In this situation (link failure), the

effect of the chosen ad hoc routing protocol appears in its

robustness and rapidity (promptness) to recover from link

failures in order to resume the communication between the end

points and avoid some TCP timeouts.

TCP Computational Energy Cost (Link loss)

0,E+00

1,E-07

2,E-07

3,E-07

4,E-07

5,E-07

6,E-07

7,E-07

8,E-07

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l

e
n

e
rg

y

AODV

DSDV

DSR

OLSR

Figure 15. TCP Energy Cost (joule/sec/sent byte)

TCP Computational Energy Cost (Signal loss)

0,E+00

1,E-07

2,E-07

3,E-07

4,E-07

5,E-07

6,E-07

7,E-07

8,E-07

9,E-07

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l

e
n

e
rg

y

AODV

DSDV

DSR

OLSR

Figure 16. TCP Energy Cost (joule/sec/sent byte)

In the case of Link Loss, we remarked that all TCP variants

in almost all cases recognize the data packet loss through

TCP Retransmission Timeout (RTO). As they are not

designed to cope with such situations (link losses), they all

react similarly: i.e. classify the packet loss as due to strong

network congestion and triggers the Slow-Start process. As

mentioned previously (Section V.A), the slow start process is

the less efficient one in terms of energy cost. Let us note here

that theoretically triggering the slow-start phase is not

necessary as the packet loss cause is not strong congestion.

If we look to each variant separately, both TCP Vegas and

TCP Westwood can be considered as well performing

variants, in most cases. This is because both variants have

the ability to rapidly re-adjust the data transmission rate over

the connection according to the performances of the new

chosen route. TCP New Reno or TCP SACK are proved to

be less rapid in that.

b. Effects of Signal Loss

Signal loss can be considered as a special case of link failure.

In fact, we consider here the special case where when the

signal is lost between two communicating end points, there is

no way to resume the communication session unless the

signal returns back. Thus, signal loss might be viewed as a

network partitioning case where the communicating end

points are totally disconnected from each other. The main

difference between link failure and signal loss models is the

ability to resume the communication session after the signal

loss using the same route (that had also to be re-established

by the routing protocol). In the link loss case, both nodes

(sender and receiver) would search for another route to

complete the session. While in the signal loss case, this is

topologically not possible. After signal loss recovery, TCP

sender will start the communication session from the

beginning, starting from Slow Start phase. And this will be

the case, each time the communicating nodes get

disconnected in the absence of wireless signal. That’s why

almost all TCP variants stay most of the connection lifetime

in Slow Start phase. In addition, TCP data packet losses

would be recognized through RTO expiration. Figure 16

demonstrates that TCP Westwood is the best performing

variant among all the other studied ones. TCP Westwood has

the ability to differentiate between data packet losses due to

congestion and those due to wireless signal problems. Thus,

better adjusts its performance parameters. The trade-off

between computational complexity and amount of data sent

makes him more energy-efficient. This leads to the total

computational energy cost of TCP Westwood is lower than

other TCP studied variants. The correct classification of

TCP Westwood of the cause of data packet losses is its main

advantage over the other variants in this case. We have

studied the signal loss model using different levels of signal

loss duration time ranging from few seconds to few tens of

seconds, and in all cases, TCP had the same behaviour.

C. Summary

In order to evaluate the performance of TCP within wireless

networks, especially when studying mobile ad hoc networks

where the communication sessions could be interrupted due to

nodes’ mobility or even nodes’ battery depletion, it is

important to get a detailed idea about TCP energy

>

8

consumption. Our current study concentrated on evaluating the

computational energy cost of the different TCP functions and

the main TCP variants that implements them. While doing so

we seen that there is a link between TCP end-2-end

performances (i.e. achieved throughput), the complexity of the

used algorithms and the computational energy-cost.

Firstly, the results show that the Fast Retransmit/Fast Recovery

phase has mush less energy cost than both Slow Start and

Congestion Avoidance phases, due to its ability to send more

TCP data bytes in a short period of time. Even though, the

Congestion Avoidance phase can be considered as having a

good balance in terms of computational energy cost which is

not the case of the slow-start phase.

Secondly, we showed that the performance of TCP varies

according to the type of data packet loss model it comes

through (network congestion, interference, link loss, or signal

loss). The results demonstrate that the link loss scenario is the

most severe situation to face for TCP. Link failure causes burst

loss over the connection and TCP (as it is nowadays)

mistakenly interprets and deals with it as it deals with strong

congestions. This leads to the repeated triggering of the Slow-

Start phase wich has been proved as non efficient in terms of

computational energy cost. The simplicity of TCP Westwood

and its ability to rapidly adjust its transmission parameter to

match network conditions makes it one of the best performing

TCP variant in terms of computational-energy cost.

Finally, to sum up, the performance of TCP is highly

affected by the loss model it comes through. Our result shows

that, the reaction of TCP in most cases could not be the right

one: for example dealing with data packet losses due to link

loss as if it was a strong congestion is proved to be an

erroneous reaction. From that, we suggest that TCP should

have a data packet loss classification algorithm in order to

classify the reason of data packet losses and accordingly

triggering the most appropriate data loss recovery algorithm

strategy. The loss differentiation algorithms should have the

ability to recognize the different data packet loss causes within

wireless mobile ad hoc networks (network congestion, wireless

channel errors, and link loss) with a minimum computational

overhead (i.e. without storing and maintaining too much state

information). Let us also remind that it had been shown in our

results (§V.B.2.b) that the classification of signal losses as

wireless channel errors by TCP Westwood had a good impact

on the computational energy cost. So there is not a need to

make explicitly the differentiation between both. The Loss

Recovery should be as simple as possible (i.e. variation of the

Fast Retransmit/Fast Recovery) avoiding un-necessary

bandwidth reductions (i.e. reducing the bandwidth only in case

of strong congestions).

VI. CONCLUSION

TCP was originally designed for wired networks. As a

congestion control transport protocol, TCP can not cope with

other data packet loss models that may be found within

wireless ad hoc networks (link failure, signal loss, and

interference). Researches found that TCP performance highly

degrades within such networks. In our work, we studied the

performance of different TCP variants in terms of energy

consumption at the node’s level. The computational energy

cost of TCP is the energy consumed in order to allow adjusting

its parameters and execute its congestion control algorithms.

We found that the complexity of these algorithms and their

failure to cope adequately with certain loss causes are the main

causes for unnecessary energy wastage at the node’s level.

We studied the TCP computational energy cost using an

hybrid approach (i.e. using simulation results to configure a

real test-bed and perform accurate experiments). The results

show that TCP as it is suffers when dealing with different data

loss models other than congestion. We also identified some

tracks to follow in order to create a novel TCP variant that is

energy-efficient in MANETs. In our future work, we will

develop this new TCP variant for MANET. This one should

have an optimized behavior in regards of the different TCP

performance parameters in such environments: throughput,

radio-energy cost and the computational energy cost.

REFERENCES

[1] H. Singh and S. Singh, “Energy consumption of tcp reno, newreno, and

sack in multi-hop wireless networks,” in ACM SIGMETRICS’02, San

Diego, CA, June 2002.

[2] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci, “A

Performance Study of TCP variants in terms of Energy Consumption

and Average Goodput within a Static Ad Hoc Environment”, in ACM

International Wireless Communications and Mobile Computing

Conference, IWCMC’06, Vancouver, Canada, July 2006.

[3] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci, “Effect

of Ad Hoc Routing Protocols on TCP Performance within MANETs,” in

IEEE International Workshop on Wireless Ad-hoc and Sensor Networks,

IWWAN’06, New York, NY, June 2006.

[4] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci,

“Emulating End-to-End Losses and Delays for Ad Hoc Networks,” in

IEEE International Conference on Communications, ICC’07, (Glasgow,

Scotland), June 2007.

[5] Bokyung Wang and Suresh Singh, “Computational energy cost of

TCP”, In IEEE INFOCOM’04, Hong Kong, March, 2004.

[6] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of

tcp processing overhead,” in IEEE Communications Magazine, vol. 27,

no. 6, pp. 23-29, June 1989.

[7] L. M. Feeney and M. Nilsson, "Investigating the energy consumption of

a wireless network interface in an ad hoc networking environment," in

IEEE INFOCOM’01, Anchorage, Alaska, April 2001.

[8] Dummynet, Available at http://info.iet.unipi.it/ luigi/ip dummynet/

[9] Network Simulator-NS-2. Available at www.isi.edu/nsnam/ns/

[10] P. Gauthier, D. Harada, and M. Stemm, “Reducing power consumption

for the next generation of pdas: It’s in the network interface,” in

MoMuC’96, Princeton, USA, Septembre 1996.

[11] http://www.sycard.com, “Sycard technologies, pccextend 140 cardbus

extender,” July 1996.

[12] C. E. Perkins and E. M. Royer, «Ad-hoc On-Demand Distance Vector

Routing», In IEEE WMCSA’99, Feb. 1999.

[13] D. B. Johnson and D. A. Maltz, «Dynamic Source Routing in Ad-Hoc

Wireless Networks», Mobile Computing, T. Imielinski and H. Korth,

Eds., Kluer, 1996, pp.153-81.

[14] C. E. Perkins and P. Bhagwat, «Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers», Comp.

Comm. Rev., Oct. 1994, pp. 234-44.

[15] Thomas Clausen, «Comparative Study of Routing Protocols for Mobile

Ad-Hoc NETworks», INRIA Research report, RR-5135, March 2004.

