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Abstract— In this paper, we present the results from a detailed 

energy measurement study of different TCP variants when used 

in Mobile Ad hoc Network environments. More precisely, we 

focus on the node-level cost of the TCP protocol; also know as the 

computational energy cost. The studied TCP variants are TCP 

New-Reno, Vegas, SACK, and Westwood. In our analysis, we 

draw a breakdown of the energy cost of the main congestion 

control algorithm (i.e. slow start, fast retransmit/fast recovery, 

and congestion avoidance) used by these TCP variants. The 

computational energy cost is studied using a hybrid approach, 

simulation/emulation, using the SEDLANE emulation tool. This 

study takes into consideration different data packet loss models 

(congestion, link loss, wireless signal loss, interference) within 

such environments when different ad hoc routing protocols 

(reactive and proactive) are used.  

The performed study gives a set of results that are of high 

interest for future improvements of TCP in MANETs. Among the 

obtained results, we show that the computational energy cost of 

TCP varies according to the type of data packet loss model it 

comes through: network congestion, interference, link loss, or 

signal loss. The results demonstrate that the link loss scenario is 

the most severe situation for TCP connections to face. In addition 

to that, we show that the Fast Retransmit/Fast Recovery phase 

has mush less energy cost than both Slow Start and Congestion 

Avoidance phases, due to the fact that it sends more TCP data 

bytes in a shorter period of time. Finally, the computational 

energy cost is quantified and compared to the TCP end to end 

performances for each TCP variant showing the link between 

both. 

 
Index Terms—TCP, computational energy cost, emulation, 

wireless mobile ad hoc networks. 

I. INTRODUCTION 

CP is the most popular reliable transport control protocol. 

It is today supported by almost all Internet applications. 

However, TCP does not always have the best 

performances. In order to identify its performance limitation 

and thus to be able to correct them, it is important to study its 

behaviour, categorize its performance metrics and quantify 

them in each of the different environment where TCP can be 

used. In this paper, we target a particular, but still important, 

performance metric and one importance-increasing 

environment in which TCP is targeted to be used. More 

precisely, we are interested in studying the computational 

energy cost of TCP when this one is used in Mobile Ad hoc 

Networks (MANETs). The major motivation behind this study 

resides in the fact that mobile devices are battery-operated and 

it is important to optimize the energy-consumed by such 

devices in order to increase their lifetime. Prior to any 

improvement, there is a need to better understand how and 

where energy is consumed in the communications pipeline.  

The computational energy cost of TCP is the energy spent 

within the node and its CPU unit in order to realize the various 

copy operations, compute checksums, respond to timeouts and 

triple duplicate ACKs, adjust timers, and perform the other 

book keeping operations. This cost is thus linked to the 

execution of the different TCP congestion control algorithms 

(Slow-Start, Fast Retransmit/Fast Recovery, and Congestion 

Avoidance). One should finally note that this work is 

complementary to the different researches targeting the 

evaluation of the radio-related energy cost of TCP variants 

(i.e. the energy consumption due to the transmission, 

retransmission and forwarding of TCP segments by ad hoc 

nodes) [1][2][3]. 

In this work, the four major TCP variants, namely TCP 

New-Reno, Vegas, SACK and Westwood, are considered. In 

order to measure the computational energy cost while 

executing their different congestion control algorithms, we 

implement different data packet loss models and we take into 

consideration different types of ad hoc routing protocols. 

Measuring the node-level energy consumption is realized using 

a realistic test-bed configuration. This configuration should 

introduce the effect of a real wireless mobile ad hoc network 

environment (i.e. realistic data packet delays and losses). In 

this paper, we introduce such effects using a MANET delay 

and packet-loss emulation tool called SEDLANE [4] (Simple 

Emulation of Delays and Losses for Ad hoc Networks 

Environment). This tool uses NS-2 simulation results in order 

to generate realistic data packet delays and losses in MANETs. 

The use of such a hybrid approach makes the evaluation 

approach taking advantage of each of these approaches: 

simulation and test-bed experiments. Hence, thanks to 

SEDLANE, the effect of different data packet loss models 

(congestion, interference, link loss, and signal loss) and ad hoc 

routing protocols (reactive vs. proactive) are introduced.  

Our study can have multiple benefits. The main foreseen 

benefits that motivated our work are: (1) to enable the 

understanding of the energy consumed by TCP at the CPU 
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level and thus to facilitate the future development of new TCP 

congestion control algorithms for MANETs that are energy-

efficient; and (2) to give a methodology, that extends the one 

defined by [5], to others that wants to evaluate the TCP energy 

cost in MANET-related specific scenario of use. The other 

benefits of such studies [6] are also: (3) to give to other 

researchers working on analytical modelling of TCP a set of 

results to develop energy models for TCP congestion control 

algorithms; and (4) to allow the incorporation of our node-

level energy models into any network simulators in order to 

obtain the overall energy cost (computational + radio) of TCP 

connections (Currently, network simulators only includes the 

radio energy cost).  

The remainder of this paper is organized as follows: after 

presenting the related work in Section II, Section III gives an 

overview of the SEDLANE emulation tool. It is followed by 

the description of the implemented test-bed and the 

methodology used to measure the node-level energy 

consumption. Section V introduces the results of our work. 

Finally, we summarize the main results and give some ideas 

for improving TCP performances in mobile ad hoc networks in 

Section VI.  

II. RELATED WORK 

One of the earliest work analyzing the processing overhead 

of TCP was presented in [6]. The goal of this work was to 

analyse the effect of TCP processing on the end-to-end 

connection throughput. The study implied both the sender and 

receiver sides. The breakdown of the processing cost in both 

the sender and receiver sides gave insightful results and led to 

the development of a variety of techniques to enhance TCP 

efficiency [5]. Most of these improvements were operating 

system or hardware related.  

Fifteen years later and with the advance of mobile 

computing devices, few researches started to look at the 

evaluation of the node-level energy consumption by wireless 

devices. Among these, some studies used realistic test-beds [5] 

[7] in order to get the energy consumption of TCP. More 

precisely, the authors in [7] has looked at the energy 

consumption of various wireless interface cards used by ad hoc 

nodes; while [5] concentrated on the evaluation of the 

operating system and hardware level operations needed by 

TCP. Suggestions on how to improve the interactions between 

TCP and the underlying device platform had then been drawn. 

In our current study, we go a step further as we are more 

interested on TCP congestion control algorithms as a whole. 

Indeed, our target is to analyse their computational energy cost 

in order to identify potential improvements for TCP when it is 

used by mobile devices in general and by MANETs in 

particular.   

The advantage of using a test-bed configuration is to get the 

energy consumed at the node level (i.e. within the CPU unit) 

which is not straightforward to obtain when using simulations. 

In the mentioned studies [5][7], the authors implemented a 

test-bed configuration in order to compute the TCP energy 

consumption within wireless environments. Both studies used 

Dummynet [8] to introduce both data packet delays and losses 

in order to emulate the effect of a wireless environment. 

Dummynet parameters were randomly selected. This is not 

realistic as data packet losses are not random neither in 

wireless network in general nor in MANETs in particular. 

Furthermore, the delays are correlated and dependant to the 

effect of the wireless environment and the protocol suite. In 

our test-bed implementation, instead of using random data 

packet delay and loss values, we exploit the realism of a new 

wireless ad hoc network emulator that is called SEDLANE 

[54]. SEDLANE allows us to introduce different data packet 

losses and delay effects that can appear within ad hoc networks 

environment (congestion, interference, link loss, and signal 

loss). 

III. OVERVIEW OF SEDLANE 

As depicted in Figure 1, the main idea of SEDLANE [4] is a 

hybrid evaluation approach that takes benefit from simulation 

results in order to enhance real test-bed experiments. It allows 

configuring Dummynet [8] pipes (i.e. defining packet loss and 

delay rules) through NS-2 (Network Simulator-2) [9] trace 

files. More precisely, SEDLANE uses NS-2 TCP trace file to 

identify the classes of packets by gathering together the 

packets that have similar RTT values. Then, SEDLANE 

dedicates one pipe or communication channel for each group 

of packets. Hence, according to the identified packet classes, 

delay values (i.e. RTT/2 on each way) and loss rates are 

distributed among classes, SEDLANE dynamically generates 

the Dummynet rules to be applied on the packets. This way, 

we control the different ad hoc network parameters using 

simulation approach making our experiments more realistic 

compared to those previously used (i.e. in terms of data packet 

delays and losses). 

 

 

Figure 1. SEDLANE Operations 

IV. TCP COMPUTATIONAL ENERGY CONSUMPTION 

A. Test-bed Configuration 

The methodology used in our energy consumption 

measurements test-bed extends the one previously used in [5] 

in which we add the use of SEDLANE.  

Our test-bed configuration (as shown in Figure 2), is 

composed of a DELL LATITUDE D410 laptop as a sender 

point while the receiver end side is a DELL OPTIPLEX GX 

520 Personal Computer (PC). Between the communicating 

nodes we implement SEDLANE (on a second DELL 

OPTIPLEX GX 520 PC), to get the effect of a wireless ad hoc 

network environment between the sender and receiver sides. 

The laptop communicates with the PC over a wireless link 

channel. In order to calculate TCP energy consumption within 
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the CPU unit: we measure both (i) the total energy 

consumption within the laptop, and (ii) the energy consumed 

within the wireless card for transmission and reception. The 

difference between the two measured values will be the 

computational energy consumption. Obviously, the 

measurements are taken at the TCP sender side.   

In order to match this computational energy consumption to 

the TCP operations, we use a minimal Linux distribution in 

which we turn off the display, the power manager and the x-

server in order to minimize the effect of any other running 

applications on the measured current. The reason for turning 

off power management as described in [5] is the fact that it 

helps determining better the current draw that corresponds to 

TCP code execution. Last but not least, all the 

processes/daemons that are not necessary to TCP operations 

are simply removed from the Linux distribution making it 

minimal. By taking all these precautions, we ensured that the 

remaining energy consumption is due to TCP congestion 

control algorithms execution and timer adjustments. 

 

 

Figure 2. TCP Computational Energy Cost Measurements Test-bed 

 Energy consumption is determined by measuring the input 

voltage and current draw using two Agilent 34401A digital 

multi-meters that have a resolution of one millisecond. We do 

not use the laptop’s battery because avoiding the use of battery 

allows for a more steady voltage to be supplied to the device 

[10]. In order to directly measure the current and voltage draw 

of the wireless 802.11b PCMCIA card, the card was attached 

to a Sycard PCCextend 140A CardBus Extender [11] that in 

turn attaches to the PCMCIA slot in the laptop. This way, we 

can separately but simultaneously measure the current draw of 

the laptop and the current draw of the wireless 802.11b 

PCMCIA card
1
. 

B. Measurements Scenarios 

In order to have a wide range of results that help better 

understanding the behaviour of TCP in front of different data 

packet loss models, we run our measurements using different 

packet loss models. In the mean time, NS-2 simulation traces 

are obtained using different ad hoc routing protocols (AODV, 

DSR, DSDV, OLSR), thus to get the effect of such routing 

protocols on TCP performances and in turn its computational 

 
1 Sycard PCCextend 140 CardBus extender card is a debug tool for 

development and test of PC cards and hosts. 

energy cost. The models are defined to be run using NS-2. 

Then the TCP trace files are used by SEDLANE in order to 

provide the loss and delay effects (as described in Section III) 

within our realistic test-bed implementation. Our study is 

categorized by the nature of data packet loss models: (i) 

network congestion, (ii) interference, (iii) link loss, and (iv) 

signal loss. 

1) Creating Network Congestions: In this packet-loss model, 

we create a congested node at the middle of a five-node 

topology by generating three TCP data traffic flows that must 

pass by this intermediate node to reach the other 

communicating end (Figure 3). One should also note that, 

different levels of data congestion can be generated by 

controlling the number of TCP data flows crossing this 

particular network node at a certain time.  

 

Figure 3. Creating network congestions  

2) Interference Between Neighboring Nodes: In this case, 

two TCP connections are on-going in parallel. The main TCP 

connection (TCP data flow 1 in Figure 4) is disturbed by the 

interferences generated by the second TCP connection (TCP 

data flow 2 in Figure 4). Indeed, the node acting as forwarder 

for the main TCP connection is placed within the interference 

range of the second TCP connection sender. So, this situation 

creates interference and thus data packet drop. 

3) Link Loss and Communication Route Changes: In this 

model we force TCP to change its communication path by 

shutting down the intermediate node between the 

communicating end points. In addition, we imply routes with 

different number of hops (Figure 5). Thus, each time TCP 

changes the communication route, the characteristics of the 

path between the communicating nodes change. It is obvious 

that the choice and the establishment delay of the new route 

will be dependant on the implemented ad hoc routing protocol. 

Packet losses and delay changes will also be implied by the 

link loss and the new chosen route.  

4) Signal Loss: this scenario illustrates the situation where 

the wireless signal is not stable. The communicating nodes 

loose the connection due to signal loss then they resume the 

communication when the signal comes back. Signal losses are 

generated by moving one of the intermediate nodes out of the 

radio range of its connection neighbour (Figure 6). 
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Figure 4. Interference Model 

 

Figure 5. Link Failure Model 

 

Figure 6. Signal loss Model 

V. TEST-BED RESULTS 

Contrarily to previous studies that concentrated on the 

operating system, hardware and device-level energy 

consumption due to TCP, the objective of our analysis is to 

analyse the energy cost of each TCP function and variant in 

order to facilitate improving their behaviour in MANETs. So, 

in the following we first analyse the computational energy cost 

of the main TCP functions: slow-start, congestion avoidance 

and fast recovery/fast retransmit. Then, a comparison of the 

different TCP variants in terms of computational energy cost is 

made. This one is realized according to the different data 

packet loss model: network congestion, interference, link loss, 

or signal loss. For each TCP variant, the computational energy 

cost is quantified and compared to the end to end 

performances. Finally, we identify and briefly discuss a set of 

design features that must have a new TCP variant to be energy 

and resource-efficient while used in MANETs.  

A. TCP Functions Computational Energy Cost 

   In order to get the energy consumption of the main TCP 

functions (Slow-start, Fast Retransmit/Fast Recovery, and 

Congestion Avoidance), we use log files at the sender side to 

log the start and end times of each TCP function. Then, we use 

this information to match the energy consumption with each 

process by using the energy consumption measurement record. 

  

0

0,5

1

1,5

2

2,5

Slow Start Fast Rex/Rec CA

TCP Functions Computational Energy Cost (joules/sec)

 

Figure 7. TCP Computational Energy Cost (joule/sec) 

The results show that the computational energy cost of the 

Fast Retransmit/Fast Recovery phase is extremely high 

compared to that of both the Slow Start and Congestion 

Avoidance phases (Figure 7). Indeed, Figure 7 shows that the 

energy consumption is almost doubled. However, this is 

mitigated when we compare the energy consumption according 

to the amount of data sent by TCP (Figure 8). This is due to 

the fact that the TCP Fast Retransmit/Fast Recovery process 

consumes an important amount of energy when triggered but it 

does so for a short period of time during which it may send 

several TCP segments on one burst. This leads to a 

continuously high computational overhead while in the slow-

start and congestion phases the computational overhead is not 

continous (backoff). Indeed, the Fast Retransmit/Fast 

Recovery phase resumes the data transmission after data 

packet loss without minimizing data transmission rate to 

minimum which is the case in Slow Start phase. So, the trade-

of energy-cost/data sent remains low in the Slow-Start phase. 

For its part, the Congestion Avoidance process has an 

acceptable trade-of between energy-cost and data sent (Figure 

9). Indeed, during this phase, TCP is assumed to be close to its 

optimal throughput value. During this phase, TCP increases its 

transmission rate by one segment each RTT. It has a regular 

throughput and computational overhead that are lower than the 

one of Fast Retransmit/fast Recovery phase (Figures 7 and 9). 

This leads to higher energy consumption per sent byte in this 

phase compared to Fast Retransmit/Fast Recovery phase 

(Figure 9). 
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Figure 8. TCP Energy Cost (joule/sec/sent byte) 
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Figure 9. Data bytes transmitted/TCP function 

Figure 10 shows an example of TCP New Reno 

computational energy cost while facing packet losses due to 

network congestions. It can be obviously seen from the 

Figure that, the computational energy cost of the Fast 

Retransmit/Fast Recovery phase is higher than that of both 

Slow Start and Congestion Avoidance phases for the 

reasons mentioned above. 

 

Figure 10. TCP NewReno computational energy cost example 

(network congestion case) 

B. Computational Energy Cost of TCP Variants  

This section aims at comparing the main TCP variants 

(NewReno, SACK, Vegas, Westwood) in front of the different 

packet loss models they can face in ad hoc networks: network 

congestion, interferences, link loss, and signal loss. As the two 

later may implies the triggering of the ad hoc routing protocol 

to re-establish the network connection, the comparative study 

will be made according to different ad hoc routing protocols. 

Contrarily, the two former are agnostic from the ad hoc routing 

protocol. 

1) Analysing the Effect of Network Congestion and 

Interferences 

In order to isolate the effect of network congestion and 

interferences from the other packet losses raisons, we used a 

static ad hoc network without route changes. In this section, 

we choose to use the Ad-hoc On-demand Distance Vector 

(AODV) [12] as ad hoc routing protocol. AODV triggers a 

route discovery only when the sender needs to send data to the 

destination. The ad hoc routing protocol choice in a static ad 

hoc network has no impact on the performances of the ongoing 

TCP connexions.  

a. Effects of  Network Congestion  

The results demonstrate that TCP Vegas has the least number 

of TCP segments lost (almost no loss) among all the other 

variants (Figure 11). This is due to the fact that TCP Vegas is 

a variant that tries to avoid congestions. In order to achieve 

this, TCP Vegas calculates and modifies its TCP transmission 

parameters with each received acknowledgement (ACK). 

However, this reliability costs a lot in terms of processing and 

storage which in turn can be translated into a high 

computational energy cost compared to all the other studied 

variants (Figure 12). 

On the other hand, we notice that TCP Westwood has better 

performance in terms of computational energy cost because it 

modifies its transmission parameters only when there is a data 

packet loss over the connection and not continuously as in 

TCP Vegas. This implies less computational overhead in spite 

of the increased number of retransmission compared to TCP 

Vegas. We also remark that TCP Westwood and New Reno 

have almost the same performances in terms of energy 

consumption per sent byte (Figure 12) even if the loss ratio is 

higher with TCP New Reno (Figure 11). From that we can 

conclude that the light computational cost (i.e. the one due to 

Fast Recovery/Fast retransmit process) of resending packets by 

TCP New Reno is neutralized by the computational overhead 

introduced by TCP Westwood (i.e. loss analysis to identify the 

packet loss cause).  

Finally, one should note that even that TCP SACK has the 

ability to resend the lost data packets faster than TCP New 

Reno due to the Selective ACK option, Figure 12 demonstrates 

that the cost of SACK processing and storage (to extract the 

numbers of lost data packets at the sender side) is high in most 

cases, especially when the number of lost data packets is 

important as in network congestion cases. 

b. Effect of Traffic Interference 

The results show that the number of data bytes lost due to 

traffic interference is higher than that due to network 

congestion (Figures 13 and 11). This result can be explained 

by the fact that TCP uses congestion control algorithms, 

meaning that TCP has the ability to better deal with network 

congestion conditions than traffic interference ones. The 

misbehavior of TCP in front of data packet losses due to 

interference leads to more computational energy cost. This 
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result can be verified by comparing both Figures 12 and 14.  

Referring to Figure 14 we can recognize that TCP Vegas has 

the worst performance in terms of computational energy cost 

compared to the other studied TCP variants. TCP Vegas 

depends on measured RTT values to adjust its performance 

parameters. In the case of traffic interference, measured RTT 

values do not change significantly, and then TCP Vegas does 

not recognize that there is a problem over the communication 

path and keeps increasing its data transmission rate normally 

which leads to more traffic interference over the connection. 

More traffic interference leads to more TCP data packet 

losses and higher computational energy cost. This important 

number of packet losses and retransmissions leads to more 

computations which has a high impact in the case of TCP 

Vegas. Even that TCP Westwood has the lowest loss ratio 

compared to other TCP variants, its computational energy 

consumption is higher than that of both TCP New Reno and 

TCP SACK. This is due to the complexity of the algorithms 

used by TCP Westwood and their continuous triggering by 

packet losses (i.e. re-calculates and modifies its data 

transmission rate after each data packet loss). Note that in 

front of congestions, TCP Westwood has the same behavior 

as TCP New Reno while in front of losses due to wireless 

effects its behavior is more complex. 

Surprisingly, we found that TCP New Reno and TCP SACK 

have almost the same performance in terms of computational 

energy cost. Although that the number of retransmitted data 

with TCP SACK is less than that in TCP New Reno, the 

processing overhead of TCP SACK neutralizes the 

advantages of the use of Selective acknowledgements used.   
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Figure 11. TCP Loss Ratio (network congestion model) 

TCP Computational Energy Cost using AODV 

(Congestion)

0,E+00

1,E-07

2,E-07

3,E-07

4,E-07

5,E-07

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l 

e
n

e
rg

y

 

Figure 12. TCP Energy Cost (joule/sec/sent byte) 
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Figure 13. TCP Loss Ratio (interference model) 
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Figure 14. TCP Energy Cost (joule/sec/sent byte)  

2) Analysing the Effect of Link and Signal Losses 

In mobile wireless ad hoc network, it is obvious that the nodes 

might have broken communication paths between the 

communicating end points (due to mobility or depletion of 

nodes’ batteries). In addition, loosing the radio signal for short 

periods might be considered as another reason to get 

disconnected temporarily from the other communicating end. 

Signal loss case could be due to geographical obstacles such as 

high buildings or weather conditions such as raining.. The 

above situations result in data packet losses over the TCP 

connections.  

The choice of the ad hoc routing protocol algorithm is 

important from two points of view: (i) its robustness to recover 

from a link failure, (ii) the overhead and frequency of its 

routing information update messages which might result in a 

congestion or traffic interference over the network links. For 

example, the overhead of ad hoc routing update messages 

could aggravate the congestion situation over the TCP 

connection. This leads to more congestion control actions 

taken to recover from the packet losses. 
Ad hoc routing protocol Start-up time (sec) Route recovery (sec) 

AODV ≈ 0.03 ≈ 1 

DSDV ≈ 90 ≈ 31 

DSR ≈ 0.07 ≈ 0.2 

OLSR ≈ 6 ≈ 7 

Table 1. Comparative study of ad hoc routing protocols 

As our objective is to analyse the effect of link loss and signal 

loss on the TCP variants performances while in MANETs 

using different ad hoc routing protocols, let us first recall the 

main performances of these routing protocols.  
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Table 1 discusses the start-up time, i.e. the time needed by 

the ad hoc routing protocol to build up its routing information 

table in order to start communicating, and the route recovery 

time of each of the four main ad hoc routing protocols: AODV 

[12], the Dynamic Source Routing (DSR) [13], the 

Destination-Sequenced Distance Vector (DSDV) [14], and the 

Optimizes Link State Routing (OLSR) [15]. The figures 

depicted in Table 1 allows us to recall that in reactive 

protocols (AODV, DSR), the routing protocol triggers its route 

discovery process only when there is data to send towards the 

destination or when a used route is broken. Contrarily, 

Proactive protocols (DSDV, OLSR) needs longer time to build 

their routing table and also to recover from a route loss. This is 

due to the fact that it makes it for the whole network prior to 

any communication request is triggered.  

a. Effects of Link Loss   

Figure 15 shows that the computational energy cost of most 

TCP variants increases compared to the above two studied 

scenarios. This is an expected observation because TCP as it is 

nowadays was not designed to cope with network link failures. 

In network link failure situations, we must expect high number 

of route re-computations. In this situation (link failure), the 

effect of the chosen ad hoc routing protocol appears in its 

robustness and rapidity (promptness) to recover from link 

failures in order to resume the communication between the end 

points and avoid some TCP timeouts.  
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Figure 15. TCP Energy Cost (joule/sec/sent byte) 

TCP Computational Energy Cost (Signal loss)

0,E+00

1,E-07

2,E-07

3,E-07

4,E-07

5,E-07

6,E-07

7,E-07

8,E-07

9,E-07

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l 

e
n

e
rg

y

AODV

DSDV

DSR

OLSR

 

Figure 16. TCP Energy Cost (joule/sec/sent byte) 

In the case of Link Loss, we remarked that all TCP variants 

in almost all cases recognize the data packet loss through 

TCP Retransmission Timeout (RTO). As they are not 

designed to cope with such situations (link losses), they all 

react similarly: i.e. classify the packet loss as due to strong 

network congestion and triggers the Slow-Start process. As 

mentioned previously (Section V.A), the slow start process is 

the less efficient one in terms of energy cost. Let us note here 

that theoretically triggering the slow-start phase is not 

necessary as the packet loss cause is not strong congestion.   

If we look to each variant separately, both TCP Vegas and 

TCP Westwood can be considered as well performing 

variants, in most cases. This is because both variants have 

the ability to rapidly re-adjust the data transmission rate over 

the connection according to the performances of the new 

chosen route. TCP New Reno or TCP SACK are proved to 

be less rapid in that.  

b. Effects of Signal Loss  

Signal loss can be considered as a special case of link failure. 

In fact, we consider here the special case where when the 

signal is lost between two communicating end points, there is 

no way to resume the communication session unless the 

signal returns back. Thus, signal loss might be viewed as a 

network partitioning case where the communicating end 

points are totally disconnected from each other. The main 

difference between link failure and signal loss models is the 

ability to resume the communication session after the signal 

loss using the same route (that had also to be re-established 

by the routing protocol). In the link loss case, both nodes 

(sender and receiver) would search for another route to 

complete the session. While in the signal loss case, this is 

topologically not possible. After signal loss recovery, TCP 

sender will start the communication session from the 

beginning, starting from Slow Start phase. And this will be 

the case, each time the communicating nodes get 

disconnected in the absence of wireless signal. That’s why 

almost all TCP variants stay most of the connection lifetime 

in Slow Start phase. In addition, TCP data packet losses 

would be recognized through RTO expiration. Figure 16 

demonstrates that TCP Westwood is the best performing 

variant among all the other studied ones. TCP Westwood has 

the ability to differentiate between data packet losses due to 

congestion and those due to wireless signal problems. Thus, 

better adjusts its performance parameters. The trade-off 

between computational complexity and amount of data sent 

makes him more energy-efficient. This leads to the total 

computational energy cost of TCP Westwood is lower than 

other TCP studied variants.  The correct classification of 

TCP Westwood of the cause of data packet losses is its main 

advantage over the other variants in this case. We have 

studied the signal loss model using different levels of signal 

loss duration time ranging from few seconds to few tens of 

seconds, and in all cases, TCP had the same behaviour. 

C. Summary  

In order to evaluate the performance of TCP within wireless 

networks, especially when studying mobile ad hoc networks 

where the communication sessions could be interrupted due to 

nodes’ mobility or even nodes’ battery depletion, it is 

important to get a detailed idea about TCP energy 
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consumption. Our current study concentrated on evaluating the 

computational energy cost of the different TCP functions and 

the main TCP variants that implements them. While doing so 

we seen that there is a link between TCP end-2-end 

performances (i.e. achieved throughput), the complexity of the 

used algorithms and the computational energy-cost.  

Firstly, the results show that the Fast Retransmit/Fast Recovery 

phase has mush less energy cost than both Slow Start and 

Congestion Avoidance phases, due to its ability to send more 

TCP data bytes in a short period of time. Even though, the 

Congestion Avoidance phase can be considered as having a 

good balance in terms of computational energy cost which is 

not the case of the slow-start phase.  

Secondly, we showed that the performance of TCP varies 

according to the type of data packet loss model it comes 

through (network congestion, interference, link loss, or signal 

loss). The results demonstrate that the link loss scenario is the 

most severe situation to face for TCP. Link failure causes burst 

loss over the connection and TCP (as it is nowadays) 

mistakenly interprets and deals with it as it deals with strong 

congestions. This leads to the repeated triggering of the Slow-

Start phase wich has been proved as non efficient in terms of 

computational energy cost. The simplicity of TCP Westwood 

and its ability to rapidly adjust its transmission parameter to 

match network conditions makes it one of the best performing 

TCP variant in terms of computational-energy cost.  

Finally, to sum up, the performance of TCP is highly 

affected by the loss model it comes through. Our result shows 

that, the reaction of TCP in most cases could not be the right 

one: for example dealing with data packet losses due to link 

loss as if it was a strong congestion is proved to be an 

erroneous reaction. From that, we suggest that TCP should 

have a data packet loss classification algorithm in order to 

classify the reason of data packet losses and accordingly 

triggering the most appropriate data loss recovery algorithm 

strategy. The loss differentiation algorithms should have the 

ability to recognize the different data packet loss causes within 

wireless mobile ad hoc networks (network congestion, wireless 

channel errors, and link loss) with a minimum computational 

overhead (i.e. without storing and maintaining too much state 

information). Let us also remind that it had been shown in our 

results (§V.B.2.b) that the classification of signal losses as 

wireless channel errors by TCP Westwood had a good impact 

on the computational energy cost. So there is not a need to 

make explicitly the differentiation between both. The Loss 

Recovery should be as simple as possible (i.e. variation of the 

Fast Retransmit/Fast Recovery) avoiding un-necessary 

bandwidth reductions (i.e. reducing the bandwidth only in case 

of strong congestions).  

VI. CONCLUSION 

TCP was originally designed for wired networks. As a 

congestion control transport protocol, TCP can not cope with 

other data packet loss models that may be found within 

wireless ad hoc networks (link failure, signal loss, and 

interference). Researches found that TCP performance highly 

degrades within such networks. In our work, we studied the 

performance of different TCP variants in terms of energy 

consumption at the node’s level. The computational energy 

cost of TCP is the energy consumed in order to allow adjusting 

its parameters and execute its congestion control algorithms. 

We found that the complexity of these algorithms and their 

failure to cope adequately with certain loss causes are the main 

causes for unnecessary energy wastage at the node’s level.  

We studied the TCP computational energy cost using an 

hybrid approach (i.e. using simulation results to configure a 

real test-bed and perform accurate experiments). The results 

show that TCP as it is suffers when dealing with different data 

loss models other than congestion. We also identified some 

tracks to follow in order to create a novel TCP variant that is 

energy-efficient in MANETs. In our future work, we will 

develop this new TCP variant for MANET. This one should 

have an optimized behavior in regards of the different TCP 

performance parameters in such environments: throughput, 

radio-energy cost and the computational energy cost. 
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