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Abstract— In this paper, we present the results from a detailed 

energy measurement study of different TCP variants when used 

in Mobile Ad hoc Network environments. More precisely, we 

focus on the node-level cost of the TCP protocol; also know as 

the computational energy cost. In fact, the computational energy 

consumption is the most important part of TCP energy 

consumption. This is already proven in previous work and our 

results confirm this fact. Sometimes, the computational energy 

cost is three times that of the communication energy cost. The 

studied TCP variants, in this work, are TCP New-Reno, Vegas, 
SACK, and Westwood. In our analysis, we draw a breakdown of 

the energy cost of the main congestion control algorithm (i.e. 

slow start, fast retransmit/fast recovery, and congestion 

avoidance) used by these TCP variants. The computational 

energy cost is studied using a hybrid approach, 

simulation/emulation, using the SEDLANE emulation tool. This 

study takes into consideration different data packet loss models 

(congestion, link loss, wireless signal loss, interference) within 

such environments when different ad-hoc routing protocols 

(reactive and proactive) are used. The performed study gives a 

set of results that are of high interest for future improvements of 

TCP in MANETs. Among the obtained results, we show that the 

computational energy cost of TCP varies according to the type 

of data packet loss model it comes through: network congestion, 

interference, link loss, or signal loss. The results demonstrate 

that the link loss scenario is the most severe situation for TCP 

connections to face. In addition to that, we show that the Fast 

Retransmit/Fast Recovery phase has much less energy cost than 

both Slow Start and Congestion Avoidance phases, due to the 

fact that it sends more TCP data bytes in a shorter period of 

time. Finally, the computational energy cost is quantified and 

compared to the TCP end to end performance for each TCP 

variant showing the link between both. 

I. INTRODUCTION 

TCP is the most popular reliable transport control protocol. 
It is today supported by almost all Internet applications. 
However, TCP does not always have the best performances. In 
order to identify its performance limitations and thus to be 
able to correct them, it is important to study its behavior, 
categorize its performance metrics and quantify them in each 
of the different environments where TCP can be used. In this 
paper, we analyze a particular, but still important, performance 
metric and one importance-increasing environment in which 

TCP is targeted to be used. More precisely, we are interested 
in studying the computational energy cost of TCP when this 
one is used in Mobile Ad-hoc Networks (MANETs). The 
major motivation behind this study resides in the fact that 
mobile devices are battery-operated and it is important to 
optimize the energy-consumed by such devices in order to 
increase their lifetime. Prior to any improvement, there is a 
need to better understand how and where energy is consumed 
in the communications pipeline.  

The computational energy cost of TCP is the energy spent 
within the node and its CPU unit in order to realize the various 
copy operations, compute checksums, and to respond to 
timeouts and triple duplicate ACKs, adjust timers, and 
perform the other book keeping operations. This cost is thus 
linked to the execution of the different TCP congestion control 
algorithms (Slow-Start, Fast Retransmit/Fast Recovery, and 
Congestion Avoidance). One should finally note that this work 
is complementary to the different researches targeting the 
evaluation of the radio-related energy cost of TCP variants 
(i.e. the energy consumption due to the transmission, 
retransmission and forwarding of TCP segments by ad-hoc 
nodes) [1][2][3]. 

In this work, the four major TCP variants, namely TCP 
New-Reno, Vegas, SACK and Westwood, are considered. In 
order to measure the computational energy cost while 
executing their different congestion control algorithms, we 
implement different data packet loss models and we take into 
consideration different types of ad-hoc routing protocols. 
Measuring the node-level energy consumption is realized 
using a realistic test-bed configuration. This configuration 
should introduce the effect of a real wireless mobile ad-hoc 
network environment (i.e. realistic data packet delays and 
losses). In this paper, we introduce such effects using a 
MANET delay and packet-loss emulation tool called 
SEDLANE [4] (Simple Emulation of Delays and Losses for 
Ad-hoc Networks Environment). This tool uses NS-2 
simulation results in order to generate realistic data packet 
delays and losses in MANETs. The use of such a hybrid 
approach makes the evaluation approach taking advantage of 
each of these approaches: simulation and test-bed 
experiments. Hence, thanks to SEDLANE, the effect of 
different data packet loss models (congestion, interference, 



link loss, and signal loss) and ad-hoc routing protocols 
(reactive vs. proactive) are introduced. Our study can have 
multiple benefits. The main foreseen benefits that motivated 
our work are: (1) to enable the understanding of the energy 
consumed by TCP at the CPU level and thus to facilitate the 
future development of new TCP congestion control algorithms 
for MANETs that are energy-efficient; and (2) to give a 
methodology, that extends the one defined by [5], to others 
that wants to evaluate the TCP energy cost in MANET-related 
specific scenario of use. The other benefits of such studies [6] 
are also: (3) to give to other researchers working on analytical 
modeling of TCP a set of results to develop energy models for 
TCP congestion control algorithms; and (4) to allow the 
incorporation of our node-level energy models into network 
simulators (such as NS-2) in order to obtain the overall energy 
cost (computational + radio) of TCP connections (Currently, 
network simulators only includes the radio energy cost).  

The remainder of this paper is organized as follows: after 
presenting the related work in Section II, Section III gives an 
overview of SEDLANE emulation tool. It is followed by the 
description of the implemented test-bed and the methodology 
used to measure the node-level energy consumption. Section 
V introduces the results of our work. Finally, we summarize 
the main results and give some ideas for improving TCP 
performances in mobile ad-hoc networks in Section VI. 

II. RELATED WORK 

One of the earliest work analyzing the processing overhead 
of TCP was presented in [6]. The goal of this work was to 
analyse the effect of TCP processing on the end-to-end 
connection throughput. The study implied both the sender and 
receiver sides. The breakdown of the processing cost in both 
the sender and receiver sides gave insightful results and led to 
the development of a variety of techniques to enhance TCP 
efficiency [5]. Most of these improvements were operating 
system or hardware related. Many years later and with the 
advance of mobile computing devices, few researches started 
to look at the evaluation of the node-level energy consumption 
by wireless devices. Among these, some studies used realistic 
test-beds [5] [7] in order to get the energy consumption of 
TCP. More precisely, the authors in [7] have looked at the 
energy consumption of various wireless interface cards used 
by ad-hoc nodes; while [5] concentrated on the evaluation of 
the operating system and hardware level operations needed by 
TCP. Suggestions on how to improve the interactions between 
TCP and the underlying device platform had then been drawn. 
In our current study, we go a step further as we are more 
interested in TCP congestion control algorithms as a whole. 
Indeed, our target is to analyse their computational energy cost 
in order to identify potential improvements for TCP when it is 
used by mobile devices in general and by MANETs in 
particular. The advantage of using a test-bed configuration is 
to get the energy consumed at the node level (i.e. within the 
CPU unit) which is not straightforward to obtain when using 
simulations. In the mentioned studies [5][7], the authors 
implemented a test-bed configuration in order to compute the 
TCP energy consumption within wireless environments. Both 
studies used Dummynet [8] to introduce both data packet 
delays and losses in order to emulate the effect of a wireless 
environment. Dummynet parameters were randomly selected. 

This is not realistic as data packet losses are not random 
neither in wireless network in general nor in MANETs in 
particular. Furthermore, the delays are correlated and 
dependant on the effect of the wireless environment and the 
protocol suite. In our test-bed implementation, instead of using 
random data packet delay and loss values, we exploit the 
realism of a new wireless ad-hoc network emulator that is 
called SEDLANE [4]. SEDLANE allows us to introduce 
different data packet losses and delay effects that can appear 
within ad-hoc networks environment (congestion, 
interference, link loss, and signal loss). 

III. OVERVIEW OF SEDLANE 

As depicted in Figure 1, the main idea of SEDLANE [4] is 
a hybrid evaluation approach that takes benefit from 
simulation results in order to enhance real test-bed 
experiments. It allows configuring Dummynet [8] pipes (i.e. 
defining packet loss and delay rules) through NS-2 (Network 
Simulator-2) [9] trace files. More precisely, SEDLANE uses 
NS-2 TCP trace file to identify the classes of packets by 
gathering together the packets that have similar RTT values. 
Then, SEDLANE dedicates one pipe or communication 
channel for each group of packets. Hence, according to the 
identified packet classes, delay values (i.e. RTT/2 on each 
way) and loss rates are distributed among classes, SEDLANE 
dynamically generates the Dummynet rules to be applied on 
the packets. This way, we control the different ad-hoc network 
parameters using simulation approach in order to make our 
experiments more realistic compared to those previously used 
(i.e. in terms of data packet delays and losses). 

 

Figure 1 SEDLANE Operation Concept 

IV. TCP COMPUTATIONAL ENERGY CONSUMPTION 

A.  Test-bed Configuration 

The methodology used in our energy consumption 
measurements test-bed extends the one previously used in [5] 
in which we add the use of SEDLANE.  

Our test-bed configuration (as shown in Figure 2), is 
composed of a DELL LATITUDE D410 laptop as a sender 
point while the receiver end side is a DELL OPTIPLEX GX 
520 Personal Computer (PC). Between the communicating 
nodes we implement SEDLANE (on a second DELL 
OPTIPLEX GX 520 PC), to get the effect of a wireless ad-hoc 
network environment between the sender and receiver sides. 
The laptop communicates with the PC over a wireless link 
channel. In order to calculate TCP energy consumption within 
the CPU unit: we measure both (i) the total energy 
consumption within the laptop, and (ii) the energy consumed 
within the wireless card for transmission and reception. The 
difference between the two measured values will be the 
computational energy consumption. Obviously, the 
measurements are taken at the TCP sender side.  
Synchronization ensured between the communicating end 
points and the PC where the measurements were taken. In 



order to match this computational energy consumption to the 
TCP operations, we use a minimal Linux distribution in which 
we turn off the display, the power manager and the x-server in 
order to minimize the effect of any other running applications 
on the measured current. The reason for turning off power 
management as described in [5] is the fact that it helps to 
better determine the current draw that corresponds to TCP 
code execution. Last but not least, all the processes/daemons 
that are not necessary to TCP operations are simply removed 
from the Linux distribution making it minimal. By taking all 
these precautions, we ensured that the remaining energy 
consumption is due to TCP congestion control algorithms 
execution and timer adjustments. 

Energy consumption is determined by measuring the input 
voltage and current draw using two Agilent 34401A digital 
multi-meters that have a resolution of one millisecond. We do 
not use the laptop’s battery because avoiding the use of battery 
allows for a more steady voltage to be supplied to the device 
[10]. In order to directly measure the current and voltage draw 
of the wireless 802.11b PCMCIA card, the card was attached 
to a Sycard PCCextend 140A CardBus Extender [11] that in 
turn attaches to the PCMCIA slot in the laptop. This way, we 
can separately but simultaneously measure the current draw of 
the laptop and the current draw of the wireless 802.11b 
PCMCIA card

1
. 

Figure 2 TCP Computational Energy Cost Measurements 
Test-bed 

B. Measurements Scenarios 

In order to have a wide range of results that help better 
understanding the behavior of TCP in front of different data 
packet loss models, we run our measurements using different 
loss scenarios. In the mean time, NS-2 simulation traces are 
obtained using different ad-hoc routing protocols (AODV, 
DSR, DSDV, OLSR), thus to get the effect of such routing 
protocols on TCP performances and in turn its computational 
energy cost. The models are defined to be run using NS-2. 
Then the TCP trace files are used by SEDLANE in order to 
provide the loss and delay effects (as described in Section III) 
within our realistic test-bed implementation. Our study is 
categorized by the nature of data packet loss models: (i) 
network congestion, (ii) interference, (iii) link loss, and (iv) 
signal loss. 

                                                           
1 Sycard PCCextend 140 CardBus extender card is a debug tool for 

development and test of PC cards and hosts. 

1) Creating Network Congestions: In this packet-loss 

model, we create a congested node at the middle of a five-

node topology. This is done by generating three TCP data 

traffic flows that must pass by this intermediate node to reach 

the other communicating end (Figure 3). One should also 

note that, different levels of data congestion can be generated 

by controlling the number of TCP data flows crossing this 

particular network node at a certain time. 

2) Interference Between Neighboring Nodes: In this case, 

two TCP connections are on-going in parallel. The main TCP 

connection (TCP data flow 1 in Figure 4) is disturbed by the 

interferences generated by the second TCP connection (TCP 

data flow 2 in Figure 4). Indeed, the node acting as forwarder 

for the main TCP connection is placed within the interference 

range of the second TCP connection sender. So, this situation 

creates interference and thus data packet drop. 

 

Figure 3 Creating network congestions 
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Figure 4 Interference Model 

3) Link Loss and Communication Route Changes: In this 

model we force TCP to change its communication path by 

shutting down the intermediate node between the 

communicating end points. In addition, we imply routes with 

different number of hops (Figure 5). Thus, each time TCP 



changes the communication route, the characteristics of the 

path between the communicating nodes change. It is obvious 

that the choice and the establishment delay of the new route 

will be dependant on the implemented ad-hoc routing 

protocol. Packet losses and delay changes will also be 

implied by the link loss and the new chosen route. 

4) Signal Loss: this scenario illustrates the situation 

where the wireless signal is not stable. The communicating 

nodes loose the connection due to signal loss then they 

resume the communication when the signal comes back. 

Signal losses are generated by moving one of the intermediate 

nodes out of the radio range of its connection neighbor 

(Figure 6). 
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Figure 5 Link Failure Model 

 

Figure 6 Signal loss Model 

V. TEST-BED RESULTS 

Contrarily to previous studies that concentrated on the 
operating system, hardware and device-level energy 
consumption due to TCP, the objective of our analysis is to 
analyse the energy cost of each TCP function and variant in 
order to facilitate improving their behaviour in MANETs. So, 
in the following we first analyse the computational energy 
cost of the main TCP functions: slow-start, congestion 
avoidance and fast recovery/fast retransmit. Then, a 
comparison of the different TCP variants in terms of 
computational energy cost is made. This one is realized 
according to the different data packet loss model: network 
congestion, interference, link loss, or signal loss. For each 
TCP variant, the computational energy cost is quantified and 
compared to the end to end performances. Finally, we identify 
and briefly discuss a set of design features that must have a 

new TCP variant to be energy and resource-efficient while 
used in MANETs. 

A. TCP Functions Computational Energy Cost 

In this section we analyze TCP New-Reno energy 
consumption using AODV as an ad-hoc routing protocol 
within the simulations. In order to get the energy consumption 
of the main TCP functions (Slow-start, Fast Retransmit/Fast 
Recovery, and Congestion Avoidance), we use log files at the 
sender side to log the start and end times of each TCP 
function. Then, we use this information to match the energy 
consumption with each process by using the energy 
consumption measurement record. 

The results show that the computational energy cost of the 
Fast Retransmit/Fast Recovery phase is extremely high 
compared to that of both the Slow Start and Congestion 
Avoidance phases (Figure 7). Indeed, Figure 7 shows that the 
energy consumption is almost doubled. However, this is 
mitigated when we compare the energy consumption 
according to the amount of data sent by TCP (Figure 8). This 
is due to the fact that the TCP Fast Retransmit/Fast Recovery 
process consumes an important amount of energy when 
triggered but it does so for a short period of time during which 
it may send several TCP segments on one burst. This leads to 
a continuously high computational overhead while in the 
slow-start and congestion phases the computational overhead 
is not continuous (back-off). Indeed, the Fast Retransmit/Fast 
Recovery phase resumes the data transmission after data 
packet loss without minimizing data transmission rate to 
minimum which is the case in Slow Start phase. So, the trade-
of energy-cost/data sent remains low in the Slow-Start phase. 
For its part, the Congestion Avoidance process has an 
acceptable trade-of between energy-cost and data sent (Figure 
9). Indeed, during this phase, TCP is assumed to be close to its 
optimal throughput value. During this phase, TCP increases its 
transmission rate by one segment each RTT. It has a regular 
throughput and computational overhead that are lower than 
those of Fast Retransmit/fast Recovery phase (Figures 7 and 
9). This leads to higher energy consumption per sent byte in 
this phase compared to Fast Retransmit/Fast Recovery phase 
(Figure 9). 
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Figure 7 TCP Computational Energy Cost (joule/sec) 
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Figure 8 TCP Energy Cost (joule/sec/sent byte) 
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Figure 9 Data bytes transmitted/TCP function 

 

Figure 10 TCP New-Reno computational energy cost example 

(network congestion case) 

Figure 10 shows an example of TCP New-Reno 
computational energy cost while facing packet losses due to 
network congestions. It can be obviously seen from the Figure 
that, the computational energy cost of the Fast Retransmit/Fast 
Recovery phase is higher than that of both Slow Start and 
Congestion Avoidance for the reasons mentioned above. 

B. Computational Energy Cost of TCP Variants 

This section aims at comparing the main TCP variants 
(New-Reno, SACK, Vegas, Westwood) in front of the 
different packet loss models they can face in ad-hoc networks: 
network congestion, interferences, link loss, and signal loss. 
As the two later may implies the triggering of the ad-hoc 

routing protocol to re-establish the network connection, the 
comparative study will be made according to different ad-hoc 
routing protocols. Contrarily, the two former are agnostic from 
the ad-hoc routing protocol. 

1) Analyzing the Effect of Network Congestion and 

Interferences:  
In order to isolate the effect of network congestion and 

interferences from other packet loss reasons, we used a static 
ad-hoc network without route changes. In this section, we 
choose to use the Ad-hoc On-demand Distance Vector 
(AODV) [12] as ad-hoc routing protocol. AODV triggers a 
route discovery only when the sender needs to send data to the 
destination. The ad-hoc routing protocol choice in a static ad-
hoc network has no impact on the performances of the 
ongoing TCP connections. 

a) Effects of  Network Congestion: 

The results demonstrate that TCP Vegas has the least 
number of TCP segments lost (almost no loss) among all the 
other variants (Figure 11). This is due to the fact that TCP 
Vegas is a variant that tries to avoid congestions. In order to 
achieve this, TCP Vegas calculates and modifies its TCP 
transmission parameters with each received acknowledgement 
(ACK). However, this reliability costs a lot in terms of 
processing which in turn can be translated into a high 
computational energy cost compared to all the other studied 
variants (Figure 12). On the other hand, we notice that TCP 
Westwood has better performance in terms of computational 
energy cost because it modifies its transmission parameters 
only when there is a data packet loss over the connection and 
not continuously as in TCP Vegas. This implies less 
computational overhead in spite of the increased number of 
retransmission compared to TCP Vegas. We also remark that 
TCP Westwood and New Reno have almost the same 
performances in terms of energy consumption per sent byte 
(Figure 12) even if the loss ratio is higher with TCP New 
Reno (Figure 11). From that we can conclude that the light 
computational cost (i.e. the one due to Fast Recovery/Fast 
retransmit process) of resending packets by TCP New Reno is 
neutralized by the computational overhead introduced by TCP 
Westwood (i.e. loss analysis to identify the packet loss cause).  

Finally, one should note that even that TCP SACK has the 
ability to resend the lost data packets faster than TCP New 
Reno due to the Selective ACK option, Figure 12 
demonstrates that the cost of SACK processing and storage (to 
extract the numbers of lost data packets at the sender side) is 
high in most cases, especially when the number of lost data 
packets is important as in network congestion cases. 

b) Effect of Traffic Interference: 

The results show that the number of data bytes lost due to 
traffic interference is higher than that due to network 
congestion (Figures 11 and 13). This result can be explained 
by the fact that TCP uses congestion control algorithms, 
meaning that TCP has the ability to better deal with network 
congestion conditions than traffic interference ones. The 
misbehavior of TCP in front of data packet losses due to 
interference leads to more computational energy cost. This 
result can be verified by comparing both Figures 12 and 14. 

comput_energy (joules)

0,000

0,005

0,010

0,015

0,020

0,025

0,030

1
0

,6
1

8
7

1
0

,6
5

4
7

1
0

,6
9

0
6

1
0

,7
2

6
6

1
0

,7
6

2
6

1
0

,7
9

8
6

1
0

,8
3

4
5

1
0

,8
7

0
5

1
0

,9
0

6
5

1
0

,9
4

2
4

1
0

,9
7

8
4

1
1

,0
1

4
3

1
1

,0
5

0
0

1
1

,0
8

5
7

1
1

,1
2

1
4

1
1

,1
5

7
1

1
1

,1
9

2
9

1
1

,2
2

8
6

1
1

,2
6

4
3

Congestion Avoidance 

Slow Start FRex/FRec 



Referring to Figure 14 we recognize that TCP Vegas has the 
worst performance in terms of computational energy cost 
compared to other studied TCP variants. TCP Vegas depends 
on measured RTT values to adjust its performance parameters. 
In the case of traffic interference, measured RTT values do not 
change significantly, and then TCP Vegas does not recognize 
that there is a problem over the communication path and keeps 
increasing its data transmission rate normally which leads to 
more traffic interference over the connection. More traffic 
interference leads to more TCP data packet losses and higher 
computational energy cost. This important number of packet 
losses and retransmissions leads to more computations which 
has a high impact in the case of TCP Vegas. Even that TCP 
Westwood has the lowest loss ratio compared to other TCP 
variants; its computational energy consumption is higher than 
that of both TCP New Reno and TCP SACK. This is due to 
the complexity of the algorithms used by TCP Westwood and 
their continuous triggering by packet losses (i.e. re-calculates 
and modifies its data transmission rate after each data packet 
loss). Note that in front of congestions, TCP Westwood has 
the same behavior as TCP New Reno while in front of losses 
due to wireless effects its behavior is more complex. 
Surprisingly, we found that TCP New Reno and TCP SACK 
have almost the same performance in terms of computational 
energy cost. Although that the number of retransmitted data 
with TCP SACK is less than that in TCP New Reno, the 
processing overhead of TCP SACK neutralizes the advantages 
of using Selective acknowledgements. 
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Figure 11 TCP Loss Ratio (network congestion model) 
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Figure 12 TCP Energy Cost (joule/sec/sent byte) 
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Figure 13 TCP Loss Ratio (interference model) 
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Figure 14 TCP Energy Cost (joule/sec/sent byte) 

2) Analyzing the Effect of Link and Signal Losses: 
In mobile wireless ad-hoc network, it is obvious that the 

nodes might have broken communication paths between the 
communicating end points (due to mobility or depletion of 
nodes’ batteries). In addition, loosing the radio signal for short 
periods might be considered as another reason to get 
disconnected temporarily from the other communicating end. 
Signal loss case could be due to geographical obstacles such 
as high buildings or weather conditions such as raining. The 
above situations result in data packet losses over the TCP 
connections.  

The choice of the ad-hoc routing protocol algorithm is 
important from two points of view: (i) its robustness to 
recover from a link failure, (ii) the overhead and frequency of 
its routing information update messages which might result in 
a congestion or traffic interference over the network links. For 
example, the overhead of ad-hoc routing update messages 
could aggravate the congestion situation over the TCP 
connection. This leads to more congestion control actions 
taken to recover from the packet losses. 

TABLE I Comparative study of ad-hoc routing protocols 

Ad-hoc routing protocol Start-up time (sec) Route recovery (sec) 

AODV ≈ 0.03 ≈ 1 

DSDV ≈ 90 ≈ 31 

DSR ≈ 0.07 ≈ 0.2 

OLSR ≈ 6 ≈ 7 

As our objective is to analyze the effect of link loss and 
signal loss on the TCP variants performances while in 
MANETs using different ad-hoc routing protocols, let us first 



recall the main performances of these routing protocols. Table 
I discusses the start-up time, i.e. the time needed by the ad-hoc 
routing protocol to build up its routing information table in 
order to start communicating, and the route recovery time of 
each of the four main ad-hoc routing protocols: AODV [12], 
the Dynamic Source Routing (DSR) [13], the Destination-
Sequenced Distance Vector (DSDV) [14], and the Optimizes 
Link State Routing (OLSR) [15]. The figures depicted in 
Table 1 allows us to recall that in reactive protocols (AODV, 
DSR), the routing protocol triggers its route discovery process 
only when there is data to send towards the destination or 
when a used route is broken. Contrarily, Proactive protocols 
(DSDV, OLSR) needs longer time to build their routing table 
and also to recover from a route loss. This is due to the fact 
that it makes it for the whole network prior to any 
communication request is triggered. 

c) Effect of Link Loss: 

Figure 15 shows that the computational energy cost of 
most TCP variants increases compared to the above two 
studied scenarios. This is an expected observation because 
TCP as it is nowadays was not designed to cope with network 
link failures. In network link failure situations, we must expect 
high number of route re-computations. In this situation (link 
failure), the effect of the chosen ad-hoc routing protocol 
appears in its robustness and rapidity (promptness) to recover 
from link failures in order to resume the communication 
between the end points and avoid some TCP timeouts. 
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Figure 15 TCP Energy Cost (joule/sec/sent byte) 

In the case of Link Loss, we remarked that all TCP 
variants in almost all cases recognize the data packet loss 
through TCP Retransmission Timeout (RTO). As they are not 
designed to cope with such situations (link losses), they all 
react similarly: i.e. classify the packet loss as due to strong 
network congestion and triggers the Slow-Start process. As 
mentioned previously (Section V.A), the slow start process is 
the less efficient one in terms of energy cost. Let us note here 
that theoretically triggering the slow-start phase is not 
necessary as the packet loss cause is not strong congestion. If 
we look to each variant separately, both TCP Vegas and TCP 
Westwood can be considered as well performing variants, in 
most cases. This is because both variants have the ability to 
rapidly re-adjust the data transmission rate over the connection 
according to the performances of the new chosen route. TCP 
New Reno or TCP SACK are proved to be less rapid in that. 

d) Effects of Signal Loss: 

Signal loss can be considered as a special case of link 
failure. In fact, we consider here the special case where when 
the signal is lost between two communicating end points, there 
is no way to resume the communication session unless the 
signal returns back. Thus, signal loss might be viewed as a 
network partitioning case where the communicating end 
points are totally disconnected from each other. The main 
difference between link failure and signal loss models is the 
ability to resume the communication session after the signal 
loss using the same route (that had also to be re-established by 
the routing protocol). In the link loss case, both nodes (sender 
and receiver) would search for another route to complete the 
session. While in the signal loss case, this is topologically not 
possible. After signal loss recovery, TCP sender will start the 
communication session from the beginning, starting from 
Slow Start phase. And this will be the case, each time the 
communicating nodes get disconnected in the absence of 
wireless signal. That’s why almost all TCP variants stay most 
of the connection lifetime in Slow Start phase. In addition, 
TCP data packet losses would be recognized through RTO 
expiration. 
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Figure 16 TCP Energy Cost (joule/sec/sent byte) 

Figure 16 demonstrates that TCP Westwood is the best 
performing variant among all the other studied ones. TCP 
Westwood has the ability to differentiate between data packet 
losses due to congestion and those due to wireless signal 
problems. Thus, better adjusts its performance parameters. 
The trade-off between computational complexity and amount 
of data sent makes him more energy-efficient. This leads to 
the total computational energy cost of TCP Westwood is 
lower than other TCP studied variants.  The correct 
classification of TCP Westwood of the cause of data packet 
losses is its main advantage over the other variants in this 
case. We have studied the signal loss model using different 
levels of signal loss duration time ranging from few seconds to 
few tens of seconds, and in all cases, TCP had the same 
behaviour. 

C. Summary 

In order to evaluate the performance of TCP within 
wireless networks, especially when studying mobile ad-hoc 
networks where the communication sessions could be 
interrupted due to nodes’ mobility or even nodes’ battery 
depletion, it is important to get a detailed idea about TCP 



energy consumption. Our current study concentrated on 
evaluating the computational energy cost of the different TCP 
functions and the main TCP variants that implements them. 
While doing so we seen that there is a link between TCP end-
2-end performances (i.e. achieved throughput), the complexity 
of the used algorithms and the computational energy-cost. 
Firstly, the results show that the Fast Retransmit/Fast 
Recovery phase has mush less energy cost than both Slow 
Start and Congestion Avoidance phases, due to its ability to 
send more TCP data bytes in a short period of time. Even 
though, the Congestion Avoidance phase can be considered as 
having a good balance in terms of computational energy cost 
which is not the case of the slow-start phase. Secondly, we 
showed that the performance of TCP varies according to the 
type of data packet loss model it comes through (network 
congestion, interference, link loss, or signal loss). The results 
demonstrate that the link loss scenario is the most severe 
situation to face for TCP. Link failure causes burst loss over 
the connection and TCP (as it is nowadays) mistakenly 
interprets and deals with it as it deals with strong congestions. 
This leads to the repeated triggering of the Slow-Start phase 
which has been proved as non-efficient in terms of 
computational energy cost. The simplicity of TCP Westwood 
and its ability to rapidly adjust its transmission parameter to 
match network conditions makes it one of the best performing 
TCP variant in terms of computational-energy cost. Finally, to 
sum up, the performance of TCP is highly affected by the loss 
model it comes through. Our result shows that, the reaction of 
TCP in most cases could not be the right one: for example 
dealing with data packet losses due to link loss as if it was a 
strong congestion is proved to be an erroneous reaction. From 
that, we suggest that TCP should have a data packet loss 
classification algorithm in order to classify the reason of data 
packet losses and accordingly triggering the most appropriate 
data loss recovery algorithm strategy. The loss differentiation 
algorithms should have the ability to recognize the different 
data packet loss causes within wireless mobile ad-hoc 
networks (network congestion, wireless channel errors, and 
link loss) with a minimum computational overhead (i.e. 
without storing and maintaining too much state information). 
Let us also remind that it had been shown in our results 
(§V.B.2.b) that the classification of signal losses as wireless 
channel errors by TCP Westwood had a good impact on the 
computational energy cost. So there is not a need to make 
explicitly the differentiation between both. The Loss Recovery 
should be as simple as possible (i.e. variation of the Fast 
Retransmit/Fast Recovery) avoiding un-necessary bandwidth 
reductions (i.e. reducing the bandwidth only in case of strong 
congestions). 

VI. CONCLUSION 

TCP was originally designed for wired networks. As a 
congestion control transport protocol, TCP can not cope with 
other data packet loss models that may be found within 
wireless ad-hoc networks (link failure, signal loss, and 
interference). Researches found that TCP performance highly 
degrades within such networks. In our work, we studied the 
performance of different TCP variants in terms of energy 
consumption at the node’s level. The computational energy 

cost of TCP is the energy consumed in order to allow 
adjusting its parameters and execute its congestion control 
algorithms. We found that the complexity of these algorithms 
and their failure to cope adequately with certain loss causes 
are the main causes for unnecessary energy wastage at the 
node’s level. We studied the TCP computational energy cost 
using a hybrid approach (i.e. using simulation results to 
configure a real test-bed and perform accurate experiments). 
The results show that TCP as it is suffers when dealing with 
different data loss models other than congestion. We also 
identified some tracks to follow in order to create a novel TCP 
variant that is energy-efficient in MANETs. Knowing where 
the most TCP energy consumption is spent is the main key to 
improve TCP functions and performance within MANETs. 
For example, helping TCP to avoid unnecessary re-
transmissions or TCP CPU calculations would help minimize 
TCP energy consumption. In future work, we will develop this 
new TCP variant for MANET. This one should have an 
optimized behavior in regards of the different TCP 
performance parameters in such environments: throughput, 
radio-energy cost and the computational energy cost. 
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