
Computational Energy Cost of TCP in MANETs

Alaa SEDDIK-GHALEB

Networks & Multimedia Systems

Research Group (LRSM), ENSIIE.

1 square de la résistance, 91025 Evry,

CEDEX - France.

seddik@ensiie.fr

Yacine GHAMRI-DOUDANE

Networks & Multimedia Systems

Research Group (LRSM), ENSIIE.

1 square de la résistance, 91025 Evry,

CEDEX - France.

ghamri @ensiie.fr

Sidi-Mohammed SENOUCI

France Telecom R&D. 2 Av. Pierre

Marzin, 22307, Lannion, France

sidimohammed.senouci@orange-

ftgroup.com

Abstract— In this paper, we present the results from a detailed

energy measurement study of different TCP variants when used

in Mobile Ad hoc Network environments. More precisely, we

focus on the node-level cost of the TCP protocol; also know as

the computational energy cost. In fact, the computational energy

consumption is the most important part of TCP energy

consumption. This is already proven in previous work and our

results confirm this fact. Sometimes, the computational energy

cost is three times that of the communication energy cost. The

studied TCP variants, in this work, are TCP New-Reno, Vegas,
SACK, and Westwood. In our analysis, we draw a breakdown of

the energy cost of the main congestion control algorithm (i.e.

slow start, fast retransmit/fast recovery, and congestion

avoidance) used by these TCP variants. The computational

energy cost is studied using a hybrid approach,

simulation/emulation, using the SEDLANE emulation tool. This

study takes into consideration different data packet loss models

(congestion, link loss, wireless signal loss, interference) within

such environments when different ad-hoc routing protocols

(reactive and proactive) are used. The performed study gives a

set of results that are of high interest for future improvements of

TCP in MANETs. Among the obtained results, we show that the

computational energy cost of TCP varies according to the type

of data packet loss model it comes through: network congestion,

interference, link loss, or signal loss. The results demonstrate

that the link loss scenario is the most severe situation for TCP

connections to face. In addition to that, we show that the Fast

Retransmit/Fast Recovery phase has much less energy cost than

both Slow Start and Congestion Avoidance phases, due to the

fact that it sends more TCP data bytes in a shorter period of

time. Finally, the computational energy cost is quantified and

compared to the TCP end to end performance for each TCP

variant showing the link between both.

I. INTRODUCTION

TCP is the most popular reliable transport control protocol.
It is today supported by almost all Internet applications.
However, TCP does not always have the best performances. In
order to identify its performance limitations and thus to be
able to correct them, it is important to study its behavior,
categorize its performance metrics and quantify them in each
of the different environments where TCP can be used. In this
paper, we analyze a particular, but still important, performance
metric and one importance-increasing environment in which

TCP is targeted to be used. More precisely, we are interested
in studying the computational energy cost of TCP when this
one is used in Mobile Ad-hoc Networks (MANETs). The
major motivation behind this study resides in the fact that
mobile devices are battery-operated and it is important to
optimize the energy-consumed by such devices in order to
increase their lifetime. Prior to any improvement, there is a
need to better understand how and where energy is consumed
in the communications pipeline.

The computational energy cost of TCP is the energy spent
within the node and its CPU unit in order to realize the various
copy operations, compute checksums, and to respond to
timeouts and triple duplicate ACKs, adjust timers, and
perform the other book keeping operations. This cost is thus
linked to the execution of the different TCP congestion control
algorithms (Slow-Start, Fast Retransmit/Fast Recovery, and
Congestion Avoidance). One should finally note that this work
is complementary to the different researches targeting the
evaluation of the radio-related energy cost of TCP variants
(i.e. the energy consumption due to the transmission,
retransmission and forwarding of TCP segments by ad-hoc
nodes) [1][2][3].

In this work, the four major TCP variants, namely TCP
New-Reno, Vegas, SACK and Westwood, are considered. In
order to measure the computational energy cost while
executing their different congestion control algorithms, we
implement different data packet loss models and we take into
consideration different types of ad-hoc routing protocols.
Measuring the node-level energy consumption is realized
using a realistic test-bed configuration. This configuration
should introduce the effect of a real wireless mobile ad-hoc
network environment (i.e. realistic data packet delays and
losses). In this paper, we introduce such effects using a
MANET delay and packet-loss emulation tool called
SEDLANE [4] (Simple Emulation of Delays and Losses for
Ad-hoc Networks Environment). This tool uses NS-2
simulation results in order to generate realistic data packet
delays and losses in MANETs. The use of such a hybrid
approach makes the evaluation approach taking advantage of
each of these approaches: simulation and test-bed
experiments. Hence, thanks to SEDLANE, the effect of
different data packet loss models (congestion, interference,

link loss, and signal loss) and ad-hoc routing protocols
(reactive vs. proactive) are introduced. Our study can have
multiple benefits. The main foreseen benefits that motivated
our work are: (1) to enable the understanding of the energy
consumed by TCP at the CPU level and thus to facilitate the
future development of new TCP congestion control algorithms
for MANETs that are energy-efficient; and (2) to give a
methodology, that extends the one defined by [5], to others
that wants to evaluate the TCP energy cost in MANET-related
specific scenario of use. The other benefits of such studies [6]
are also: (3) to give to other researchers working on analytical
modeling of TCP a set of results to develop energy models for
TCP congestion control algorithms; and (4) to allow the
incorporation of our node-level energy models into network
simulators (such as NS-2) in order to obtain the overall energy
cost (computational + radio) of TCP connections (Currently,
network simulators only includes the radio energy cost).

The remainder of this paper is organized as follows: after
presenting the related work in Section II, Section III gives an
overview of SEDLANE emulation tool. It is followed by the
description of the implemented test-bed and the methodology
used to measure the node-level energy consumption. Section
V introduces the results of our work. Finally, we summarize
the main results and give some ideas for improving TCP
performances in mobile ad-hoc networks in Section VI.

II. RELATED WORK

One of the earliest work analyzing the processing overhead
of TCP was presented in [6]. The goal of this work was to
analyse the effect of TCP processing on the end-to-end
connection throughput. The study implied both the sender and
receiver sides. The breakdown of the processing cost in both
the sender and receiver sides gave insightful results and led to
the development of a variety of techniques to enhance TCP
efficiency [5]. Most of these improvements were operating
system or hardware related. Many years later and with the
advance of mobile computing devices, few researches started
to look at the evaluation of the node-level energy consumption
by wireless devices. Among these, some studies used realistic
test-beds [5] [7] in order to get the energy consumption of
TCP. More precisely, the authors in [7] have looked at the
energy consumption of various wireless interface cards used
by ad-hoc nodes; while [5] concentrated on the evaluation of
the operating system and hardware level operations needed by
TCP. Suggestions on how to improve the interactions between
TCP and the underlying device platform had then been drawn.
In our current study, we go a step further as we are more
interested in TCP congestion control algorithms as a whole.
Indeed, our target is to analyse their computational energy cost
in order to identify potential improvements for TCP when it is
used by mobile devices in general and by MANETs in
particular. The advantage of using a test-bed configuration is
to get the energy consumed at the node level (i.e. within the
CPU unit) which is not straightforward to obtain when using
simulations. In the mentioned studies [5][7], the authors
implemented a test-bed configuration in order to compute the
TCP energy consumption within wireless environments. Both
studies used Dummynet [8] to introduce both data packet
delays and losses in order to emulate the effect of a wireless
environment. Dummynet parameters were randomly selected.

This is not realistic as data packet losses are not random
neither in wireless network in general nor in MANETs in
particular. Furthermore, the delays are correlated and
dependant on the effect of the wireless environment and the
protocol suite. In our test-bed implementation, instead of using
random data packet delay and loss values, we exploit the
realism of a new wireless ad-hoc network emulator that is
called SEDLANE [4]. SEDLANE allows us to introduce
different data packet losses and delay effects that can appear
within ad-hoc networks environment (congestion,
interference, link loss, and signal loss).

III. OVERVIEW OF SEDLANE

As depicted in Figure 1, the main idea of SEDLANE [4] is
a hybrid evaluation approach that takes benefit from
simulation results in order to enhance real test-bed
experiments. It allows configuring Dummynet [8] pipes (i.e.
defining packet loss and delay rules) through NS-2 (Network
Simulator-2) [9] trace files. More precisely, SEDLANE uses
NS-2 TCP trace file to identify the classes of packets by
gathering together the packets that have similar RTT values.
Then, SEDLANE dedicates one pipe or communication
channel for each group of packets. Hence, according to the
identified packet classes, delay values (i.e. RTT/2 on each
way) and loss rates are distributed among classes, SEDLANE
dynamically generates the Dummynet rules to be applied on
the packets. This way, we control the different ad-hoc network
parameters using simulation approach in order to make our
experiments more realistic compared to those previously used
(i.e. in terms of data packet delays and losses).

Figure 1 SEDLANE Operation Concept

IV. TCP COMPUTATIONAL ENERGY CONSUMPTION

A. Test-bed Configuration

The methodology used in our energy consumption
measurements test-bed extends the one previously used in [5]
in which we add the use of SEDLANE.

Our test-bed configuration (as shown in Figure 2), is
composed of a DELL LATITUDE D410 laptop as a sender
point while the receiver end side is a DELL OPTIPLEX GX
520 Personal Computer (PC). Between the communicating
nodes we implement SEDLANE (on a second DELL
OPTIPLEX GX 520 PC), to get the effect of a wireless ad-hoc
network environment between the sender and receiver sides.
The laptop communicates with the PC over a wireless link
channel. In order to calculate TCP energy consumption within
the CPU unit: we measure both (i) the total energy
consumption within the laptop, and (ii) the energy consumed
within the wireless card for transmission and reception. The
difference between the two measured values will be the
computational energy consumption. Obviously, the
measurements are taken at the TCP sender side.
Synchronization ensured between the communicating end
points and the PC where the measurements were taken. In

order to match this computational energy consumption to the
TCP operations, we use a minimal Linux distribution in which
we turn off the display, the power manager and the x-server in
order to minimize the effect of any other running applications
on the measured current. The reason for turning off power
management as described in [5] is the fact that it helps to
better determine the current draw that corresponds to TCP
code execution. Last but not least, all the processes/daemons
that are not necessary to TCP operations are simply removed
from the Linux distribution making it minimal. By taking all
these precautions, we ensured that the remaining energy
consumption is due to TCP congestion control algorithms
execution and timer adjustments.

Energy consumption is determined by measuring the input
voltage and current draw using two Agilent 34401A digital
multi-meters that have a resolution of one millisecond. We do
not use the laptop’s battery because avoiding the use of battery
allows for a more steady voltage to be supplied to the device
[10]. In order to directly measure the current and voltage draw
of the wireless 802.11b PCMCIA card, the card was attached
to a Sycard PCCextend 140A CardBus Extender [11] that in
turn attaches to the PCMCIA slot in the laptop. This way, we
can separately but simultaneously measure the current draw of
the laptop and the current draw of the wireless 802.11b
PCMCIA card

1
.

Figure 2 TCP Computational Energy Cost Measurements
Test-bed

B. Measurements Scenarios

In order to have a wide range of results that help better
understanding the behavior of TCP in front of different data
packet loss models, we run our measurements using different
loss scenarios. In the mean time, NS-2 simulation traces are
obtained using different ad-hoc routing protocols (AODV,
DSR, DSDV, OLSR), thus to get the effect of such routing
protocols on TCP performances and in turn its computational
energy cost. The models are defined to be run using NS-2.
Then the TCP trace files are used by SEDLANE in order to
provide the loss and delay effects (as described in Section III)
within our realistic test-bed implementation. Our study is
categorized by the nature of data packet loss models: (i)
network congestion, (ii) interference, (iii) link loss, and (iv)
signal loss.

1 Sycard PCCextend 140 CardBus extender card is a debug tool for

development and test of PC cards and hosts.

1) Creating Network Congestions: In this packet-loss

model, we create a congested node at the middle of a five-

node topology. This is done by generating three TCP data

traffic flows that must pass by this intermediate node to reach

the other communicating end (Figure 3). One should also

note that, different levels of data congestion can be generated

by controlling the number of TCP data flows crossing this

particular network node at a certain time.

2) Interference Between Neighboring Nodes: In this case,

two TCP connections are on-going in parallel. The main TCP

connection (TCP data flow 1 in Figure 4) is disturbed by the

interferences generated by the second TCP connection (TCP

data flow 2 in Figure 4). Indeed, the node acting as forwarder

for the main TCP connection is placed within the interference

range of the second TCP connection sender. So, this situation

creates interference and thus data packet drop.

Figure 3 Creating network congestions

n4

TCP data flow_1

TCP data flow_2

> 250 m

200m200m

< 500 m
> 550m> 550m

Interference

Figure 4 Interference Model

3) Link Loss and Communication Route Changes: In this

model we force TCP to change its communication path by

shutting down the intermediate node between the

communicating end points. In addition, we imply routes with

different number of hops (Figure 5). Thus, each time TCP

changes the communication route, the characteristics of the

path between the communicating nodes change. It is obvious

that the choice and the establishment delay of the new route

will be dependant on the implemented ad-hoc routing

protocol. Packet losses and delay changes will also be

implied by the link loss and the new chosen route.

4) Signal Loss: this scenario illustrates the situation

where the wireless signal is not stable. The communicating

nodes loose the connection due to signal loss then they

resume the communication when the signal comes back.

Signal losses are generated by moving one of the intermediate

nodes out of the radio range of its connection neighbor

(Figure 6).

R
o
u
te
_
3

Figure 5 Link Failure Model

Figure 6 Signal loss Model

V. TEST-BED RESULTS

Contrarily to previous studies that concentrated on the
operating system, hardware and device-level energy
consumption due to TCP, the objective of our analysis is to
analyse the energy cost of each TCP function and variant in
order to facilitate improving their behaviour in MANETs. So,
in the following we first analyse the computational energy
cost of the main TCP functions: slow-start, congestion
avoidance and fast recovery/fast retransmit. Then, a
comparison of the different TCP variants in terms of
computational energy cost is made. This one is realized
according to the different data packet loss model: network
congestion, interference, link loss, or signal loss. For each
TCP variant, the computational energy cost is quantified and
compared to the end to end performances. Finally, we identify
and briefly discuss a set of design features that must have a

new TCP variant to be energy and resource-efficient while
used in MANETs.

A. TCP Functions Computational Energy Cost

In this section we analyze TCP New-Reno energy
consumption using AODV as an ad-hoc routing protocol
within the simulations. In order to get the energy consumption
of the main TCP functions (Slow-start, Fast Retransmit/Fast
Recovery, and Congestion Avoidance), we use log files at the
sender side to log the start and end times of each TCP
function. Then, we use this information to match the energy
consumption with each process by using the energy
consumption measurement record.

The results show that the computational energy cost of the
Fast Retransmit/Fast Recovery phase is extremely high
compared to that of both the Slow Start and Congestion
Avoidance phases (Figure 7). Indeed, Figure 7 shows that the
energy consumption is almost doubled. However, this is
mitigated when we compare the energy consumption
according to the amount of data sent by TCP (Figure 8). This
is due to the fact that the TCP Fast Retransmit/Fast Recovery
process consumes an important amount of energy when
triggered but it does so for a short period of time during which
it may send several TCP segments on one burst. This leads to
a continuously high computational overhead while in the
slow-start and congestion phases the computational overhead
is not continuous (back-off). Indeed, the Fast Retransmit/Fast
Recovery phase resumes the data transmission after data
packet loss without minimizing data transmission rate to
minimum which is the case in Slow Start phase. So, the trade-
of energy-cost/data sent remains low in the Slow-Start phase.
For its part, the Congestion Avoidance process has an
acceptable trade-of between energy-cost and data sent (Figure
9). Indeed, during this phase, TCP is assumed to be close to its
optimal throughput value. During this phase, TCP increases its
transmission rate by one segment each RTT. It has a regular
throughput and computational overhead that are lower than
those of Fast Retransmit/fast Recovery phase (Figures 7 and
9). This leads to higher energy consumption per sent byte in
this phase compared to Fast Retransmit/Fast Recovery phase
(Figure 9).

0

0,5

1

1,5

2

2,5

Slow Start Fast Rex/Rec CA

TCP Functions Computational Energy Cost (joules/sec)

Figure 7 TCP Computational Energy Cost (joule/sec)

0,00E+00

2,00E-05

4,00E-05

6,00E-05

8,00E-05

1,00E-04

Slow Start Fast Rex/Rec CA

TCP Functions Computational Energy Cost

(joules/sec/byte)

Figure 8 TCP Energy Cost (joule/sec/sent byte)

0

10000

20000

30000

40000

50000

60000

Slow Start Fast Rex/Rec CA

Data bytes transmitted (bytes)

Figure 9 Data bytes transmitted/TCP function

Figure 10 TCP New-Reno computational energy cost example

(network congestion case)

Figure 10 shows an example of TCP New-Reno
computational energy cost while facing packet losses due to
network congestions. It can be obviously seen from the Figure
that, the computational energy cost of the Fast Retransmit/Fast
Recovery phase is higher than that of both Slow Start and
Congestion Avoidance for the reasons mentioned above.

B. Computational Energy Cost of TCP Variants

This section aims at comparing the main TCP variants
(New-Reno, SACK, Vegas, Westwood) in front of the
different packet loss models they can face in ad-hoc networks:
network congestion, interferences, link loss, and signal loss.
As the two later may implies the triggering of the ad-hoc

routing protocol to re-establish the network connection, the
comparative study will be made according to different ad-hoc
routing protocols. Contrarily, the two former are agnostic from
the ad-hoc routing protocol.

1) Analyzing the Effect of Network Congestion and

Interferences:
In order to isolate the effect of network congestion and

interferences from other packet loss reasons, we used a static
ad-hoc network without route changes. In this section, we
choose to use the Ad-hoc On-demand Distance Vector
(AODV) [12] as ad-hoc routing protocol. AODV triggers a
route discovery only when the sender needs to send data to the
destination. The ad-hoc routing protocol choice in a static ad-
hoc network has no impact on the performances of the
ongoing TCP connections.

a) Effects of Network Congestion:

The results demonstrate that TCP Vegas has the least
number of TCP segments lost (almost no loss) among all the
other variants (Figure 11). This is due to the fact that TCP
Vegas is a variant that tries to avoid congestions. In order to
achieve this, TCP Vegas calculates and modifies its TCP
transmission parameters with each received acknowledgement
(ACK). However, this reliability costs a lot in terms of
processing which in turn can be translated into a high
computational energy cost compared to all the other studied
variants (Figure 12). On the other hand, we notice that TCP
Westwood has better performance in terms of computational
energy cost because it modifies its transmission parameters
only when there is a data packet loss over the connection and
not continuously as in TCP Vegas. This implies less
computational overhead in spite of the increased number of
retransmission compared to TCP Vegas. We also remark that
TCP Westwood and New Reno have almost the same
performances in terms of energy consumption per sent byte
(Figure 12) even if the loss ratio is higher with TCP New
Reno (Figure 11). From that we can conclude that the light
computational cost (i.e. the one due to Fast Recovery/Fast
retransmit process) of resending packets by TCP New Reno is
neutralized by the computational overhead introduced by TCP
Westwood (i.e. loss analysis to identify the packet loss cause).

Finally, one should note that even that TCP SACK has the
ability to resend the lost data packets faster than TCP New
Reno due to the Selective ACK option, Figure 12
demonstrates that the cost of SACK processing and storage (to
extract the numbers of lost data packets at the sender side) is
high in most cases, especially when the number of lost data
packets is important as in network congestion cases.

b) Effect of Traffic Interference:

The results show that the number of data bytes lost due to
traffic interference is higher than that due to network
congestion (Figures 11 and 13). This result can be explained
by the fact that TCP uses congestion control algorithms,
meaning that TCP has the ability to better deal with network
congestion conditions than traffic interference ones. The
misbehavior of TCP in front of data packet losses due to
interference leads to more computational energy cost. This
result can be verified by comparing both Figures 12 and 14.

comput_energy (joules)

0,000

0,005

0,010

0,015

0,020

0,025

0,030

1
0

,6
1

8
7

1
0

,6
5

4
7

1
0

,6
9

0
6

1
0

,7
2

6
6

1
0

,7
6

2
6

1
0

,7
9

8
6

1
0

,8
3

4
5

1
0

,8
7

0
5

1
0

,9
0

6
5

1
0

,9
4

2
4

1
0

,9
7

8
4

1
1

,0
1

4
3

1
1

,0
5

0
0

1
1

,0
8

5
7

1
1

,1
2

1
4

1
1

,1
5

7
1

1
1

,1
9

2
9

1
1

,2
2

8
6

1
1

,2
6

4
3

Congestion Avoidance

Slow Start FRex/FRec

Referring to Figure 14 we recognize that TCP Vegas has the
worst performance in terms of computational energy cost
compared to other studied TCP variants. TCP Vegas depends
on measured RTT values to adjust its performance parameters.
In the case of traffic interference, measured RTT values do not
change significantly, and then TCP Vegas does not recognize
that there is a problem over the communication path and keeps
increasing its data transmission rate normally which leads to
more traffic interference over the connection. More traffic
interference leads to more TCP data packet losses and higher
computational energy cost. This important number of packet
losses and retransmissions leads to more computations which
has a high impact in the case of TCP Vegas. Even that TCP
Westwood has the lowest loss ratio compared to other TCP
variants; its computational energy consumption is higher than
that of both TCP New Reno and TCP SACK. This is due to
the complexity of the algorithms used by TCP Westwood and
their continuous triggering by packet losses (i.e. re-calculates
and modifies its data transmission rate after each data packet
loss). Note that in front of congestions, TCP Westwood has
the same behavior as TCP New Reno while in front of losses
due to wireless effects its behavior is more complex.
Surprisingly, we found that TCP New Reno and TCP SACK
have almost the same performance in terms of computational
energy cost. Although that the number of retransmitted data
with TCP SACK is less than that in TCP New Reno, the
processing overhead of TCP SACK neutralizes the advantages
of using Selective acknowledgements.

Loss Ratio (Congestion, AODV)

0,00%

0,10%

0,20%

0,30%

0,40%

0,50%

New Reno SACK Vegas Westwood

%
 (

lo
s
t

d
a
ta

/s
e
n

t
d

a
ta

)
b

y
te

s

Figure 11 TCP Loss Ratio (network congestion model)

TCP Computational Energy Cost using AODV

(Congestion)

0,E+00

1,E-07

2,E-07

3,E-07

4,E-07

5,E-07

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l

e
n

e
rg

y

Figure 12 TCP Energy Cost (joule/sec/sent byte)

Loss Ratio (Interference, AODV)

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

New Reno SACK Vegas Westwood

%
 (

lo
s
t

d
a
ta

/s
e
n

t
d

a
ta

)
b

y
te

s

Figure 13 TCP Loss Ratio (interference model)

TCP Computational Energy Cost using AODV

(Interference)

0,E+00

2,E-07

4,E-07

6,E-07

8,E-07

1,E-06

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l

e
n

e
rg

y

Figure 14 TCP Energy Cost (joule/sec/sent byte)

2) Analyzing the Effect of Link and Signal Losses:
In mobile wireless ad-hoc network, it is obvious that the

nodes might have broken communication paths between the
communicating end points (due to mobility or depletion of
nodes’ batteries). In addition, loosing the radio signal for short
periods might be considered as another reason to get
disconnected temporarily from the other communicating end.
Signal loss case could be due to geographical obstacles such
as high buildings or weather conditions such as raining. The
above situations result in data packet losses over the TCP
connections.

The choice of the ad-hoc routing protocol algorithm is
important from two points of view: (i) its robustness to
recover from a link failure, (ii) the overhead and frequency of
its routing information update messages which might result in
a congestion or traffic interference over the network links. For
example, the overhead of ad-hoc routing update messages
could aggravate the congestion situation over the TCP
connection. This leads to more congestion control actions
taken to recover from the packet losses.

TABLE I Comparative study of ad-hoc routing protocols

Ad-hoc routing protocol Start-up time (sec) Route recovery (sec)

AODV ≈ 0.03 ≈ 1

DSDV ≈ 90 ≈ 31

DSR ≈ 0.07 ≈ 0.2

OLSR ≈ 6 ≈ 7

As our objective is to analyze the effect of link loss and
signal loss on the TCP variants performances while in
MANETs using different ad-hoc routing protocols, let us first

recall the main performances of these routing protocols. Table
I discusses the start-up time, i.e. the time needed by the ad-hoc
routing protocol to build up its routing information table in
order to start communicating, and the route recovery time of
each of the four main ad-hoc routing protocols: AODV [12],
the Dynamic Source Routing (DSR) [13], the Destination-
Sequenced Distance Vector (DSDV) [14], and the Optimizes
Link State Routing (OLSR) [15]. The figures depicted in
Table 1 allows us to recall that in reactive protocols (AODV,
DSR), the routing protocol triggers its route discovery process
only when there is data to send towards the destination or
when a used route is broken. Contrarily, Proactive protocols
(DSDV, OLSR) needs longer time to build their routing table
and also to recover from a route loss. This is due to the fact
that it makes it for the whole network prior to any
communication request is triggered.

c) Effect of Link Loss:

Figure 15 shows that the computational energy cost of
most TCP variants increases compared to the above two
studied scenarios. This is an expected observation because
TCP as it is nowadays was not designed to cope with network
link failures. In network link failure situations, we must expect
high number of route re-computations. In this situation (link
failure), the effect of the chosen ad-hoc routing protocol
appears in its robustness and rapidity (promptness) to recover
from link failures in order to resume the communication
between the end points and avoid some TCP timeouts.

TCP Computational Energy Cost (Link loss)

0,E+00

1,E-07

2,E-07

3,E-07

4,E-07

5,E-07

6,E-07

7,E-07

8,E-07

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l

e
n

e
rg

y

AODV

DSDV

DSR

OLSR

Figure 15 TCP Energy Cost (joule/sec/sent byte)

In the case of Link Loss, we remarked that all TCP
variants in almost all cases recognize the data packet loss
through TCP Retransmission Timeout (RTO). As they are not
designed to cope with such situations (link losses), they all
react similarly: i.e. classify the packet loss as due to strong
network congestion and triggers the Slow-Start process. As
mentioned previously (Section V.A), the slow start process is
the less efficient one in terms of energy cost. Let us note here
that theoretically triggering the slow-start phase is not
necessary as the packet loss cause is not strong congestion. If
we look to each variant separately, both TCP Vegas and TCP
Westwood can be considered as well performing variants, in
most cases. This is because both variants have the ability to
rapidly re-adjust the data transmission rate over the connection
according to the performances of the new chosen route. TCP
New Reno or TCP SACK are proved to be less rapid in that.

d) Effects of Signal Loss:

Signal loss can be considered as a special case of link
failure. In fact, we consider here the special case where when
the signal is lost between two communicating end points, there
is no way to resume the communication session unless the
signal returns back. Thus, signal loss might be viewed as a
network partitioning case where the communicating end
points are totally disconnected from each other. The main
difference between link failure and signal loss models is the
ability to resume the communication session after the signal
loss using the same route (that had also to be re-established by
the routing protocol). In the link loss case, both nodes (sender
and receiver) would search for another route to complete the
session. While in the signal loss case, this is topologically not
possible. After signal loss recovery, TCP sender will start the
communication session from the beginning, starting from
Slow Start phase. And this will be the case, each time the
communicating nodes get disconnected in the absence of
wireless signal. That’s why almost all TCP variants stay most
of the connection lifetime in Slow Start phase. In addition,
TCP data packet losses would be recognized through RTO
expiration.

TCP Computational Energy Cost (Signal loss)

0,E+00

1,E-07

2,E-07

3,E-07

4,E-07

5,E-07

6,E-07

7,E-07

8,E-07

9,E-07

New Reno SACK Vegas Westwood

c
o

m
p

u
ta

ti
o

n
a
l

e
n

e
rg

y

AODV

DSDV

DSR

OLSR

Figure 16 TCP Energy Cost (joule/sec/sent byte)

Figure 16 demonstrates that TCP Westwood is the best
performing variant among all the other studied ones. TCP
Westwood has the ability to differentiate between data packet
losses due to congestion and those due to wireless signal
problems. Thus, better adjusts its performance parameters.
The trade-off between computational complexity and amount
of data sent makes him more energy-efficient. This leads to
the total computational energy cost of TCP Westwood is
lower than other TCP studied variants. The correct
classification of TCP Westwood of the cause of data packet
losses is its main advantage over the other variants in this
case. We have studied the signal loss model using different
levels of signal loss duration time ranging from few seconds to
few tens of seconds, and in all cases, TCP had the same
behaviour.

C. Summary

In order to evaluate the performance of TCP within
wireless networks, especially when studying mobile ad-hoc
networks where the communication sessions could be
interrupted due to nodes’ mobility or even nodes’ battery
depletion, it is important to get a detailed idea about TCP

energy consumption. Our current study concentrated on
evaluating the computational energy cost of the different TCP
functions and the main TCP variants that implements them.
While doing so we seen that there is a link between TCP end-
2-end performances (i.e. achieved throughput), the complexity
of the used algorithms and the computational energy-cost.
Firstly, the results show that the Fast Retransmit/Fast
Recovery phase has mush less energy cost than both Slow
Start and Congestion Avoidance phases, due to its ability to
send more TCP data bytes in a short period of time. Even
though, the Congestion Avoidance phase can be considered as
having a good balance in terms of computational energy cost
which is not the case of the slow-start phase. Secondly, we
showed that the performance of TCP varies according to the
type of data packet loss model it comes through (network
congestion, interference, link loss, or signal loss). The results
demonstrate that the link loss scenario is the most severe
situation to face for TCP. Link failure causes burst loss over
the connection and TCP (as it is nowadays) mistakenly
interprets and deals with it as it deals with strong congestions.
This leads to the repeated triggering of the Slow-Start phase
which has been proved as non-efficient in terms of
computational energy cost. The simplicity of TCP Westwood
and its ability to rapidly adjust its transmission parameter to
match network conditions makes it one of the best performing
TCP variant in terms of computational-energy cost. Finally, to
sum up, the performance of TCP is highly affected by the loss
model it comes through. Our result shows that, the reaction of
TCP in most cases could not be the right one: for example
dealing with data packet losses due to link loss as if it was a
strong congestion is proved to be an erroneous reaction. From
that, we suggest that TCP should have a data packet loss
classification algorithm in order to classify the reason of data
packet losses and accordingly triggering the most appropriate
data loss recovery algorithm strategy. The loss differentiation
algorithms should have the ability to recognize the different
data packet loss causes within wireless mobile ad-hoc
networks (network congestion, wireless channel errors, and
link loss) with a minimum computational overhead (i.e.
without storing and maintaining too much state information).
Let us also remind that it had been shown in our results
(§V.B.2.b) that the classification of signal losses as wireless
channel errors by TCP Westwood had a good impact on the
computational energy cost. So there is not a need to make
explicitly the differentiation between both. The Loss Recovery
should be as simple as possible (i.e. variation of the Fast
Retransmit/Fast Recovery) avoiding un-necessary bandwidth
reductions (i.e. reducing the bandwidth only in case of strong
congestions).

VI. CONCLUSION

TCP was originally designed for wired networks. As a
congestion control transport protocol, TCP can not cope with
other data packet loss models that may be found within
wireless ad-hoc networks (link failure, signal loss, and
interference). Researches found that TCP performance highly
degrades within such networks. In our work, we studied the
performance of different TCP variants in terms of energy
consumption at the node’s level. The computational energy

cost of TCP is the energy consumed in order to allow
adjusting its parameters and execute its congestion control
algorithms. We found that the complexity of these algorithms
and their failure to cope adequately with certain loss causes
are the main causes for unnecessary energy wastage at the
node’s level. We studied the TCP computational energy cost
using a hybrid approach (i.e. using simulation results to
configure a real test-bed and perform accurate experiments).
The results show that TCP as it is suffers when dealing with
different data loss models other than congestion. We also
identified some tracks to follow in order to create a novel TCP
variant that is energy-efficient in MANETs. Knowing where
the most TCP energy consumption is spent is the main key to
improve TCP functions and performance within MANETs.
For example, helping TCP to avoid unnecessary re-
transmissions or TCP CPU calculations would help minimize
TCP energy consumption. In future work, we will develop this
new TCP variant for MANET. This one should have an
optimized behavior in regards of the different TCP
performance parameters in such environments: throughput,
radio-energy cost and the computational energy cost.

REFERENCES

[1] H. Singh and S. Singh, “Energy consumption of tcp reno, newreno, and

sack in multi-hop wireless networks,” in ACM SIGMETRICS’02, San

Diego, CA, June 2002.

[2] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci, “A

Performance Study of TCP variants in terms of Energy Consumption

and Average Goodput within a Static Ad Hoc Environment”, in ACM

International Wireless Communications and Mobile Computing

Conference, IWCMC’06, Vancouver, Canada, July 2006.

[3] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci, “Effect

of Ad Hoc Routing Protocols on TCP Performance within MANETs,”

in IEEE International Workshop on Wireless Ad-hoc and Sensor

Networks, IWWAN’06, New York, NY, June 2006.

[4] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci,

“Emulating End-to-End Losses and Delays for Ad Hoc Networks,” in

IEEE International Conference on Communications, ICC’07,

(Glasgow, Scotland), June 2007.

[5] Bokyung Wang and Suresh Singh, “Computational energy cost of

TCP”, In IEEE INFOCOM’04, Hong Kong, March, 2004.

[6] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of

tcp processing overhead,” in IEEE Communications Magazine, vol. 27,

no. 6, pp. 23-29, June 1989.

[7] L. M. Feeney and M. Nilsson, "Investigating the energy consumption

of a wireless network interface in an ad hoc networking environment,"

in IEEE INFOCOM’01, Anchorage, Alaska, April 2001.

[8] Dummynet, Available at http://info.iet.unipi.it/ luigi/ip dummynet/

[9] Network Simulator-NS-2. Available at www.isi.edu/nsnam/ns/

[10] P. Gauthier, D. Harada, and M. Stemm, “Reducing power consumption

for the next generation of pdas: It’s in the network interface,” in

MoMuC’96, Princeton, USA, Septembre 1996.

[11] http://www.sycard.com, “Sycard technologies, pccextend 140 cardbus

extender,” July 1996.

[12] C. E. Perkins and E. M. Royer, “Ad-hoc On-Demand Distance Vector

Routing”, In IEEE WMCSA’99, Feb. 1999.

[13] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad-Hoc

Wireless Networks”, Mobile Computing, T. Imielinski and H. Korth,
Eds., Kluer, 1996, pp.153-181.

[14] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-

Sequenced Distance-Vector Routing (DSDV) for Mobile Computers”,

Comp. Comm. Rev., Oct. 1994, pp. 234-44.

[15] Thomas Clausen, “Comparative Study of Routing Protocols for Mobile

Ad-Hoc NETworks”, INRIA Research report, RR-5135, March 2004.

