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Abstract- The optimization of channel assignment in cellular 
networks is a very complex optimization problem and it 
becomes more difficult when the network handles different 
classes of traffic. The objective is that channel utility be 
maximized so as to maximize service in a stochastic caller 
environment. We address in this paper, the dynamic channel 
assignment (DCA) combined with call admission control 
(CAC) problem in a multimedia cellular network that handles 
several classes of traffic with different resource requirements. 
The problem is naturally formulated as a Semi-Markov 
Decision Process (SMDP) problem and we use an approach 
based on reinforcement learning (RL) [neuro-dynamic 
programming (NDP)] method to solving it. We show that the 
policy obtained using our Q-DCA algorithm provides a good 
solution and is able to earn significantly higher revenues than 
classical solutions. A broad set of experiments illustrates the 
robustness of our policy that improves the Quality of Service 
(QoS) and reduces call-blocking probabilities for handoff 
calls in spite of variations in the traffic conditions.  

1 Introduction 

Technological advances and rapid development of 
handheld wireless terminals have facilitated the rapid 
growth of wireless communications and mobile computing. 
The tremendous growth of the wireless/mobile user 
population, coupled with the bandwidth requirements of 
multimedia applications, requires efficient reuse of the 
scarce radio spectrum allocated to wireless/mobile 
communications.  

The total system bandwidth is divided into channels1, 
with each channel centered around a frequency and the 
most important problem is to allocate these channels so as 
to maximize the service provided to a set of mobile callers. 
The assignment of this bandwidth fall into two categories: 
Fixed Channel Allocation (FCA), where each cell has a 
fixed number of channels, and dynamic channel allocation 
(DCA) where channels are dynamically assigned to cells. 
In FCA, the set of channels is partitioned according to 
some reuse pattern, and the partitions are permanently 

                                                           
1 Channels could be frequencies, time slots or codes depending on the 
radio access technique used. 

assigned to cells. When a call arrives in a cell, if any pre-
assigned channel is unused; it is assigned, else the call is 
blocked. Such policies are very simple, however, they do 
not adapt to changing traffic conditions and user 
distribution. More efficient are DCA policies, where all 
channels are placed in a pool and are assigned to new calls 
as needed such that the carrier-to-interference ratio (CIR) 
criterion is satisfied. At the cost of higher complexity, 
DCA schemes provide flexibility and traffic adaptability. 

In both FCA and DCA systems, when a mobile caller 
crosses from one cell to another, he needs to be allocated a 
new channel (one that does not violate the channel reuse2 
constraint) in the destination cell. This event (handoff) 
must be transparent to the user. If no such channel is 
available, the call must be dropped/disconnected from the 
system. One objective of a channel allocation policy is to 
minimize the number of calls that are dropped when they 
are handed off to a busy cell, since dropping existing calls 
is generally more undesirable than blocking new calls. 

In [1] the authors provide an overview of different 
channel assignment algorithms and compare them in terms 
of performance, flexibility, and complexity. One of the 
best existing dynamic channel allocation strategies we 
found in the literature belongs to a class of algorithms 
called exhaustive searching DCA [2,3,4-7]. In these 
algorithms, a cost (reward) is associated with each 
available channel. When a new call arrives, the system 
searches exhaustively for the channel with minimum cost 
(maximum reward) and then that channel is assigned to the 
call. Some criteria including maximum availability, 
maximum interferers, and minimum damage have been 
used.  

This paper proposes an alternative approach to solve 
dynamic channel assignment and call admission control 
problems in multimedia cellular networks. The optimal 
policy is obtained using a form of reinforcement learning 
(RL) algorithm known as Q-learning [8,9]. One of the most 

                                                           
2 A channel can be associated with many cells as long as the co-channel 
interference constraint is satisfied. 
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significant and actively investigated RL algorithms is Q-
learning. It has the nice property that it does not need a 
model of the environment, and the system is designed to 
learn an optimal policy by directly interacting with the 
environment. Our method learn a policy that outperforms 
the most commonly used policies in cellular systems. It is 
able to reduce the blocking probability for handoff calls 
and, also, able to generate higher revenues. 

We consider a system with two classes of traffic. Our 
objective is to assign the best available channel to the 
customer so as to maximize the expected value of the 
rewards received over an infinite planning horizon. In such 
context (multi-class traffic framework) it is sometimes 
preferable to block a call of a less valuable class and to 
accept another call of a more valuable class. By making the 
assumptions of Poisson arrivals and a common exponential 
service time, this problem can be formulated as an SMDP 
(Semi-Markov Decision Process) and learning is a solution 
for this problem. 

The remainder of this paper is organized as follows. 
After a brief description of the Q-Learning strategy and the 
formulation of the channel assignment problem as an 
SMDP in section 2, we detail the Q-learning 
implementation that solves this SMDP in section 3. 
Performance evaluation and numerical results are exposed 
in section 4. Finally, section 5 summarizes the main 
contributions of this work. 

2 Problem definition 

We propose an alternative approach to solving the call 
admission control and dynamic channel assignment 
problems. This approach is based on the judgment that 
DCA and CAC can be regarded as an SMDP, and learning 
is one of the effective ways to find a solution to this 
problem. A particular learning paradigm has been adopted, 
known as neuro-dynamic programming (NDP) 
[reinforcement learning (RL)]. In NDP, as shown in Fig. 1, 
an agent aims to learn an optimal control policy by 
repeatedly interacting with the controlled environment in 
such a way that its performance, evaluated by the sum of 
rewards (payoff) obtained from the environment, is 
maximized. There exist a variety of RL algorithms. A 
particular algorithm that appears to be suitable for these 
two tasks is called Q-learning. In what follows, we briefly 
describe this algorithm, and then present the details of how 
the CAC and DCA problems can be solved by means of Q-
learning. 

2.1 Q-learning Strategy 
The agent, the environment it interacts with, and the 

task it has to achieve are the components that define the 
reinforcement-learning framework (cf. Fig. 1). The 
interaction between the agent and the environment is 
continuous. On one hand the agent’s decision process 
selects actions according to the perceived situations of the 
environment, and on the other hand these situations evolve 
under the influence of the actions. Each time the agent 

performs an action, it receives a reward. A reward is a 
scalar value that tells the agent how well it is fulfilling the 
given task. To be formal let’s denote s (∈  S, a finite set), a 
representation of the environment’s state as it is perceived 
by the agent, a (∈  A, a finite set) the selected action, and r 
(∈  R, a finite set) the received reward. The agent’s 
decision process is called policy and is a mapping from 
states to actions (π: S → A). The interaction between the 
agent and the environment is continuous and a learning 
agent modifies its policy according to its experience and to 
its goal which is to maximize the cumulated rewards over 
time Vπ(st) defined as follows: 
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where 10 ≤≤ γ  is a discount factor.  

Agent   

action a reward   r state    s 

environment   

s 0 s 1
a 0

r 0
s   2   

a   1   r   1   
a   2   r   2 

…   
Goal : learn to choose action that maximize 
r0 +γr1 + γ2 r2 + …, where 0≤ γ ≤1  

Fig. 1. The Agent-environment interaction. 

A function Q(s,a) is used to memorize the expected 
reward for the action a and state s. The action-value 
function Q can be represented either by a look-up table or a 
function approximator (neural network, regression tree, 
etc.). On each step of interaction, and in the case of a look-
up table representation, the action-value function is 
updated with equation (2): 
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and tα  is the learning rate. 

It has been shown in [9] that if the Q-value of each 
admissible (s,a) pair is visited infinitely often, and if the 
learning rate is decreased to zero in a suitable way, then as 

∞→t , Qt(s, a) converges to Q*(s, a) with probability 1. 
The optimal policy )(* sπ  is the one with the maximum 
Q-value: ),(*maxarg)(*
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We consider two classes of traffic, but the ideas in this 
paper can be extended easily to several classes of traffic as 
well. This cellular system can be considered as a discrete 
event system. The major events that may occur in a cell 
include new and handoff calls arrivals and call departures 



for the two traffic classes. These events are modeled as 
stochastic variables with appropriate probability 
distributions. In particular, new call arrivals in a cell obey 
a Poisson distribution. Call holding time is assumed to be 
exponentially distributed (cf. Table 2).  

2.2 Learning Dynamic Channel Assignment and 
Call Admission Control 

This work is an extension of a previous work of Nie 
and al. [10]. We consider in this paper not only channel 
assignment task but also the call admission control 
problem in a cellular network. We consider a DCA system 
handling not only one class of traffic as in [10] but two 
classes of traffic (C1 and C2) with N cells and M available 
channels kept in a common pool. Any channel can be 
temporarily allocated to any cell, provided that the 
constraint on the reuse distance is fulfilled. We develop, in 
this section, the dynamic programming formulation 
suitable for this problem. 

Calls arrive and leave over time and the network can 
choose to accept or reject connection requests. If the call is 
accepted, the system assigns to it one of the available 
channels. The goal of the network operator is to find a 
DCA policy that maximizes the long-term revenue/utility 
and reduces handoff blocking probabilities (Contrary to 
[10] who does not give any priority to handoff calls neither 
in its simulation nor in the NDP formulation). 

The experimental parameters are shown in Table 2. We 
identify the system states s, the actions a and the associated 
rewards r as follows: 

1) States: We define the state s=(i,A(i),x,e) as: 
- i∈ {1,…,N} is the cell index specifying there is an 

event e occurring in cell i. 
- A(i)∈ {1, 2,…,M} is the number of available 

channels in cell i, which depends on the channel 
usage conditions in this cell and in its interfering 
cells3 I(i).  
To obtain A(i), we define an M-dimensional 
availability vector uq for cell q, q= 1,2,…,N as: 
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- x=(x1, x2) where x1 and x2  are the number of calls 
of each class of traffic (C1 and C2 respectively) in 
cell i. 

- e={1,2,3,4} where  

                                                           
3 The set of neighborhood cells that lie at a distance less than a reuse 
distance D. 
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We do not take into account the states associated with 
a call departure. The reason for this simplification is 
that call departure is not a decision point for the 
admission controller, and therefore no action needs to 
be taken.  
 

2) Actions: We combine the notions of call admission 
control and channel allocation. Thus, applying an 
action is to reject the current call request call in cell i, 
or to assign a channel from the A(i) available channels 
to it. So, the possible actions are defined as 
A={0,1,2,…,M} where 
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where k = 1, 2, …, M and uik = 0. 
 

3) Rewards: The reward r(s, a) represents the cost of 
choosing the action a in the state s.  
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(5)

When there is a call arrival in cell i, the reward 
parameter will be equal to zero when the action is to 
reject the call (a=0) and it represents the cost of 
choosing channel a to serve this call when it is 
accepted (a≠0). There are many possibilities to define 
r. Here, we consider the type of the call and as in [10] 
the usage conditions in cochannel4 cells associated 
with cell i. In the above equation, n1(k) is the number 
of compact cells in reference to cell i in which channel 
k is being used. Compact cells are the cells with 
minimum averaging distance between cochannel cells 
[7]. In the case of a regular hexagonal layout shown in 
Fig. 6, compact cells are located on the third tier with 
three cells apart; n2(k) is the number of cochannel cells 
which are located on the third tier, but not compact 
cells in which channel k is being used; n3(k) is the 
number of other cochannel cells currently using 
channel k; and r1, r2, and r3 are constant associated 
with the above-mentioned conditions related to n1(k), 
n2(k), and n3(k) respectively. To obtain n1(k), n2(k), 
and n3(k) at time t, we define the an M-dimensional 
channel status vector for each cell q, q= 1,2,…,N as: 


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=
otherwise

qcellinuseiniskchannelif
sqk ,0

,1
 

The parameter ηi represents a constant associated 
with the type of the current call (new call or handoff 

                                                           
4 Cells using the same channel without causing interference. 



call), and it is defined in Table 1. To prioritize handoff 
calls, larger reward values have been chosen for 
handoff calls. We also suppose that C1 calls are more 
important than C2 calls. 
 

η1 η2 η3 η4 
5 1 50 10 

Table 1. The reward parameter ηi. 

In summary, we choose the state descriptor to be 
)),,(),(,( 21 exxiAis = , where A(i) is the number of 

available channels in cell i; xk is the number of calls of 
class Ck in progress, and e ∈  {1,2,3,4} stands for a new or 
handoff call arrival. When an event occurs, the agent has to 
choose a feasible action for that event. The action set is 
A(s)={0=reject}∪ {1,…,M} upon a call arrival. Call 
terminations are not decision points, so no action needs to 
be taken. The agent has to determine a policy for accepting 
and choosing the most appropriate channel for calls given 
s, which maximizes the long-run average revenue, over an 
infinite horizon. The system constitutes an SMDP with a 
finite state space S = {(i, A(i), x, e)} and a finite action 
space A={0,1,…,M}. 

3 Algorithm Implementation 

After the specification of the SMDP (states, actions, 
and rewards) associated with the channel assignment 
problem, let us describe the online implementation of the 
Q-learning algorithm for solving it. Here, an important 
issue arises as to how to store the values of the Q-function. 

3.1 Q-values representation 
A number of powerful convergence proofs have been 

given showing that Q-learning is guaranteed to converge 
with probability 1, in cases where the state space is small 
enough so that look-up table representation can be used. 
Furthermore, the major difficulty with SMDP problems is 
the curse of dimensionality (the exponential state space 
explosion with the problem dimension). Clearly, when the 
number of state-action pairs becomes large, look-up table 
representation will be infeasible, and a compact 
representation where Q is represented as a function of a 
smaller set of parameters using a function approximator in 
necessary (state aggregation [11,12], neural networks [13], 
regression trees [14]). In a previous work [15] we used a 
neural network but in this paper we choose state 
aggregation approximation architecture defined below.  

3.2 Implementation 
We note that the only interesting states in which 

decisions need to be made are those associated with call 
arrivals. So, we avoid the updates of Q-values at departure 
states. This will reduce the amount of computation and 
storage of Q-values significantly.  

The flowchart of Fig.2 summarizes the procedures 
involved in the Q-DCA5 algorithm. When there is a call 
arrival (new or handoff call), the algorithm first determines 
if accepting this call will violate QoS. If this case, the call 
is rejected; else the action is chosen according to  

),(*maxarg
)(

asQa
sAa∈

=   (6)
Where A(s)={0=reject, 1,2,…,M}. 
 

In particular, (6) implies the following procedures. 
When a call arrives, the Q-value of rejecting the currently 
concerned call attempt and the Q-value of accepting and 
choosing channel a to serve this call are determined from 
the lookup table. If rejection has the higher value, the call 
is dropped. Otherwise, if acceptance has the higher value, 
the call is accepted and channel a is assigned to it.  

To learn the optimal Q-values Q*(s,a), the value 
function is updated at each transition from state s to s’ 
under action a using (2). The parameters in cost evaluation 
of (5) were r1 = +5, r2 = +1, and r3 = -1. Such a setting 
would result in a situation in which the channels being 
used in the compact cells (associated with r1) have 
maximum Q-values and thus become the most favorable 
candidates to be chosen.  

We consider a mobile communication system 
consisting of N = 36 hexagonal cells with M = 70 channels 
available in a pool. With the reuse distance RD 21=  (R 
is the cell radius), it turns out that if a channel is allocated 
to cell i, it cannot be reused in two tiers of adjacent cells 
with i because of unacceptable cochannel interference 
levels. Thus, there are at most 18 interfering cells for a 
specified reference cell. The discount factor is chosen to be 
γ = 0.5. Training runs typically used a fixed learning rate α 
= 0.1, which seemed to give results even though 
convergence theorems require decreasing α with time. 

3.3 Exploration 
Basically, the convergence theorem of Q-learning 

requires that all state-action pairs (s,a) are tried infinitely. 
To overcome the slow convergence, during the training 
period, when there are more than one feasible action, the 
control action is chosen, not according to (6), but 
according to a Boltzman distribution [16]. The idea is to 
start with high exploration and decrease it to nothing as 
time goes on, so that after a while we are only exploring 
(s,a)'s that have worked out at least moderately well 
before. 

 

                                                           
5 Q-DCA-the online implementation of the Q-learning algorithm for 
solving the channel assignment and CAC problems in a DCA system. 
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Fig. 2. Q-DCA algorithm. 

4 Experimental results 

In order to evaluate the performance of our solution, we 
apply a test data set to compare it with the greedy-DCA6 
and the DCA algorithm presented in [10] that we call 
DCA-Nie. The performance of the algorithms has been 
evaluated on the basis of the total rewards of the accepted 
calls (Total rewards), the total rewards of the rejected calls 
(Total Lost Rewards), and by measuring the handoff 
blocking probability.  

The parameters used in the training period are given in 
Table 2.  

 Source Type 
 C1 C2 

Call duration (1/µC)  
Sojourn time in a cell (1/µH) 

Call arrival rate 

180 s 
60 s 

hourcalls /1201 =λ
 

180 s 
60 s 

hourcalls /602/12 == λλ
 

Table 2. Experimental Parameters 

                                                           
6 Greedy-DAC: Policy that randomly selects a channel to serve a call 
without any interference measurements. The channels are selected based 
on a uniform distribution and hence each of the M channels has an equal 
probability of being selected. 

A set of simulations was carried out, including the 
cases of uniform distribution, non-uniform distribution, 
time-varying traffic load, and equipment failure. The 
experimental results are shown in Fig. 3 through Fig. 13. 
The results show that the reinforcement learning is a good 
solution for channel assignment and call admission control 
problems. The proposed algorithm, Q-DCA, is 
considerably powerful compared to the greedy policy. In 
all cases the lost reward due to rejection of customers and 
blocking probability of handoff calls are significantly 
reduced. The total rewards due to acceptance of customers 
are also significantly increased. 

4.1 Uniform Distribution 

Our first set of experiments involved a constant traffic 
load for the different classes of traffic among all 36 cells. 
In this case we used the policy learned in the training 
period but with eight different traffic load conditions 
among all 36 cells as shown in Table 3.  

 Sources Type 
 C1 C2 
 
 

Traffic Load 
(calls/hour) 

60 
80 

100 
120 
140 
160 
180 
200 

30 
40 
50 
60 
70 
80 
90 
100 

Table 3. Experimental Parameters 

From the results shown in Fig. 3, we see that the 
handoff blocking probability decreases significantly using 
Q-learning compared to the greedy policy for all the traffic 
loads considered in Table 3 and especially when the traffic 
load is heavy. The handoff blocking probability metric is 
given by  

systemtheinhndoffsofnumber
systemtheinblockedcallshandoffofnumberPHO =  (7)

Fig. 4(a) shows the total rewards of using learning 
computed over one simulated hour with the eight different 
traffic loads of Table 3. We can see that the total rewards 
due to the acceptance of new or handoff calls of the two 
classes of traffic (C1 or C2) in the cellular network using Q-
DCA is more important compared to those of the greedy-
DCA policy. Fig. 4(b) shows that the total loss rewards due 
to rejection of new calls or the failure of handoff calls were 
reduced significantly using Q-learning for all the traffic 
loads and especially when the traffic load is heavy.  Q-
DCA outperforms the traditional schemes (greedy-DCA) 
and it performs as well as the DCA-Nie does. 
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Fig. 3.  Handoff blocking probability. 
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Fig. 4 (a) Total rewards/1 hour  (b) Total Loss rewards/1 hour. 

We also compare the handoff blocking probability of 
C1 traffic vs. C2 traffic using Q-DCA (Fig. 5). This metric 
is given, for each class of traffic Ci, by  

systemtheinCtypeofhandoffsofnumber
systemtheinblockedCtypeofcallshandoffofnumberP

i

i
CHO i

=)(
 (8)

Since C1 calls have priority than C2 calls7, we notice 
that the handoff blocking probability of C1( )1(CHOP ) is less 
than the handoff blocking probability of C2 ( )2(CHOP ). 

                                                           
7 The rewards associated to C1 calls are more important than those 
associated to C2 calls (cf. table I) 
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Fig. 5. Handoff blocking probability of C1 vs. C2 using Q-DAC. 

 
This illustrates clearly that Q-DCA has the potential to 

significantly improve the performance of the system over a 
broad range of network loads. It is interesting to observe 
that the Q-values were not relearned and retrained, 
indicating that the system possesses some generalization 
capabilities. 

4.2 Non-uniform Distribution 
In this case we used the policy learned in the training 

period but the traffic densities in terms of calls/hour are 
inhomogeneously distributed among 36 cells (for both 
classes C1 and C2) as shown in Fig. 6. The averaging 
arrival call rate is 100 calls/h for C1 calls and 50 calls/h for 
C2 calls.  
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Fig.6.  Nonuniform traffic distribution (C1 traffic load/C2 traffic 

load). 

Fig. 8 shows the handoff blocking probabilities of 
using our method against the arrival rates which were 
increased by 100%, 120%, 140%, 160%, 180%, and 200% 
over the base rates given in Fig. 6. Figures 7 to 9 indicate 
significant improvements of the Q-learning algorithm over 
the greedy scheme. 
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Fig.7 .  Handoff blocking probability 
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(b) 

Fig. 8 (a) Total rewards per 1 hour  (b) Total Loss rewards 
per 1 hour. 

It is also clear from the Fig. 9 that the handoff blocking 
probabilities of C1 calls calculated using (8) are less than 
the handoff blocking probability of C2 calls for the Q-DCA 
algorithm (Fig. 9). 
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Fig. 9. Handoff blocking probability of C1 vs. C2 using Q-

DAC. 

4.3 Time-Varying Traffic Load 
The traffic load in a cellular system is typically time 

varying. In this case, we always use the policy learned in 
training period and we use, as in [10], the pattern given in 
Fig. 10 concerning arrivals during a typical 24-h business 
day. The peak hours occur at 11:00 a.m. and 4:00 p.m. Fig. 
11 gives the simulation results under the assumption that 
the two traffic classes were spatially uniformly distributed 
and followed the same time-varying pattern given in Fig. 
10. The maximum traffic load is set to be 120 calls/h for C1 
class and 60 calls/h for C2 class. The blocking probabilities 
were calculated on an hour-by-hour basis. The 
improvements of the proposed reinforcement learning 

algorithms over the greedy policy are apparent specially 
when the traffic is heavy (at 11:00 a.m. and 4:00 p.m.). 
The gains due to RL are about 61% for Q-DCA. 
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Fig.10.  A traffic pattern of a typical business day. 
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Fig. 11. Performance with time-varying traffic load and spatial 

uniform traffic.  

We also examined the case in which the traffic loads were 
both spatially nonuniformally distributed and temporally 
varying. Fig. 12 gives the simulation results under the 
same assumption of the uniform case. The improvements 
of the proposed reinforcement learning algorithms over the 
greedy policy are apparent but a more significant 
improvement was seen in the uniform case. The gains due 
to RL are about 44% for Q-DCA. 
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Fig. 12. Performance with time-varying traffic load and spatial 

nonuniform traffic.  

4.4 Equipment Failure in DCA systems 
We simulate, as in [10], an equipment failure by some 
frequency channels being temporally unavailable. There 
were initially 70 channels available in the system. Between 
10:00 and 15:00 o'clock, we temporally shut down 0, 3, 5 
or 7 channels. Figure 13 shows the effect of channel failure 
on the system using Q-DCA algorithm in term of handoff 
blocking probability. The two classes of traffic were 
spatially uniformly distributed and followed the same 



parameters given in table 2. We can clearly see that Q-
DCA channel assignment algorithm possesses certain 
robustness to channel failure situations. 
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Fig. 13. Performance of Q-DCA with channel failure. 

5 Conclusion 

In this paper, we presented a new approach to solve the 
channel assignment combined with call admission control 
problems in DCA system. We formulate the problem as an 
average reward dynamic programming problem (SMDP), 
but with a very large state space. Traditional SMDP 
methods are computationally infeasible for such large-
scale problems. So, the optimal solutions are obtained by 
using a self-learning scheme based on Q-Learning 
algorithm. The benefits gained by using Q-DCA can be 
summarized as follows. First, the learning approach 
provides a realistic and simple way to obtain an 
approximate optimal solution for which an optimal 
solution can be very difficult to find using traditional 
methods. Second, since the proposed scheme is performed 
in a real-time environment, it is possible to carry out online 
learning while performing the real channel assignment and 
admission control. Compared to other schemes, the system 
offers some generalization capabilities. So, any unforeseen 
event due to significant variations in the environment 
conditions can be considered as a new experience for 
improving the adaptation and the learning quality of the 
system. Third, the channel assignment policy can be 
determined with very little computational effort. Q-DCA 
algorithm is quite sophisticated compared to other Q-
learning channel allocation schemes (DCA-Nie) [10] since 
it combines the notions of call admission control and 
channel allocation. It is, also, shown that the proposed 
algorithm results in significant savings than alternative 
heuristics.  
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