
Coupling Loss and Delay Differentiation to
Enhance TCP Performance within Wireless

Multi-hop Ad-hoc Networks1

Alaa GHALEB-SEDDIK and Yacine GHAMRI-DOUDANE
Ecole Nationale Superieure d’Informatique pour l’industrie et l’Entreprise (ENSIIE),

1 square de la Résistance, 91025 Evry CEDEX - France
Email: {seddik, ghamri}@ensiie.fr

Sidi Mohammed SENOUCI
University of Bourgogne, ISAT

49 Rue mademoiselle Bourgeois, 58000 Nevers, France
Email: Sidi-Mohammed.Senouci @ u-bourgogne.fr

1Preliminary version of this paper appeared in the Proceedings of IEEE COMSNETS’2009.

Manuscript received December 12, 2011; revised February 12, 2012; accepted March 28, 2012.

 AbstractÑ Most existing TCP variants cannot distinguish
between different packet loss causes within MANETs. TCP
was, mainly, developed to deal with network congestion
errors. While within MANETs, there are packet loss causes
other than congestion. Studying the behaviour of TCP in
front of such losses, we notice that TCP doesnÕt have always
the optimum behaviour as it reacts, in most cases, without
considering the loss cause. This misbehaviour might cause
network performance degradation and resourcesÕ waste. To
overcome this problem, many LDAs have been designed.
However, these LDAs were optimized for data networks
where wireless link is only the last hop, meaning that they
might be inadequate for MANETs. Also, the proposed LDAs
deal only with losses due to wireless channel and/or
congestion-induced errors. We show, in this paper, the
importance of dealing with a third loss cause that is common
in MANETs, which is link failure. We propose a new TCP
variant that is called TCP-WELCOME. TCP -WELCOME
can: (i) identify the loss cause by coupling loss and delay
information, and (ii) trigger the appropriate packet loss
recovery according to the identified loss cause. The
performance evaluation, through both simulations and
experimental tests, shows that TCP-WELCOME optimizes
both energy consumption and achievable throughput. TCP-
WELCOME does not change the standard and can operate
with existing TCP variants.

Index TermsÑ TCP, MANET, Loss Differentiation
Algorithm, Loss Recovery Algorithm, Energy consumption,
Throughput, Simulation, Experimental evaluation.

I. INTRODUCTION

Wireless multi-hop ad-hoc networks differ from
traditional wired networks by the multitude of packet loss
situations to which they are subjected. This is due to the
intrinsic characteristics of wireless channels (e.g. signal
fading, interference, obstacles, and environment effects)
that might obstruct the proper reception of data packets at
the other end. Moreover, in some cases, these

vulnerabilities of wireless channel can result in a
complete link failure. Although link failure is of low
probability in wired networks, since physical cables
constitute the data transmission media, it is rather
common in MANETs (due to nodes’ mobility, battery
depletion, or obstacles). The volatility of the
communication channel is a typical problem with
wireless links, which is not the case with wired cables.
TCP is a transport protocol that aims at ensuring high
reliability by guaranteeing the reception of data packets.
However, TCP was designed primarily to address
network congestion, which is the main cause for data
packet loss in wired networks. Therefore, other types of
data packet loss encountered in MANETs are prone to
misinterpretation by TCP, which, in turn, will lead to
TCP performance degradation. In order to overcome the
performance limitation of TCP when deployed in
MANETs, we propose a new TCP variant that we call
TCP-WELCOME. TCP-WELCOME optimizes the
performance of TCP in both terms of the achievable
throughput and the energy consumption of TCP’s nodes
within the network. This is achieved through its ability to
distinguish among, and efficiently deal with, the different
data packet loss situations encountered in MANETs.
TCP-WELCOME’s main idea is based on coupling loss
and delay information over the connection in order to
classify the cause of packet losses and then reacting
properly to recover from them. We mention that, this
work extends our previous study conducted in [1]. In this
presented work, a complete performance evaluation using
a realistic test-bed configuration is conducted to reinforce
our previously performed simulation study.

This paper is organized as follows: we start by
discussing, in the next section; the main issues that might
influence TCP performance in MANETs. After that, we
present the related work in section 3, and then we present
our proposition to enhance TCP performance within

MANETs (TCP-WELCOME) in section 4 describing its
main algorithms in detail. In Section 5, we describe the
validation process of TCP-WELCOME through
simulations and realistic test-bed configuration and
discuss the obtained results. Then, we conclude our work
in this paper in section 6.

II. TCP WITHIN WIRELESS AD-HOC NETWORKS

MANETs obviously inherit wireless channel related
problems. In addition, ad-hoc networks suffer from other
problems related to their specific characteristics, such as
transient network partitions, route failures that would
result from nodes’ mobility, nodes’ battery depletion, and
the multi-hop nature of the communications. In order to
improve TCP performance over MANETs, it must be
able to distinguish and to recover from the new data
packet loss types that arise within such networks. The
new challenges that TCP would confront within such
networks can be classified into: wireless lossy channels,
multi-path routing, network partitions, network topology
and the surrounding environment, link failures, and
power constraints. We discuss these issues in the
following sections.

A. WIRELESS LOSSY CHANNEL

Wireless channel errors cause packet corruption and
result in TCP segments and/or ACK loss. When ACKs do
not arrive at the TCP sender within certain amount of
time (Retransmission Time-Out or RTO), TCP sender
retransmits that segment, exponentially backs off its
retransmission timer, reduces its congestion control
window threshold (SSThreshold), and closes its
congestion window (CWND) to one segment. Frequent
channel errors lead to having small congestion window
continuously at the sender side resulting in low
connection throughput [2].

B. NETWORK PARTITION

MANETs may periodically get partitioned for several
seconds at a time. If the TCP sender and receiver are in
different partitions, all the sent packets will be dropped
and TCP sender invokes its congestion control algorithm.
If the network remains partitioned for a time relatively
high to RTO, the situation gets worse because of the
“serial timeouts phenomena”. Serial timeout happens due
to multiple consecutive retransmissions of the same
segment while the receiver is disconnected from the
sender. Thus, all these retransmissions are lost. Since the
retransmission timer at the sender side is doubled with
each unsuccessful retransmission attempt (until it reaches
64 sec), several consecutive failures can lead to inactivity
that might last even when the sender and receiver get
reconnected [2]. The most adequate solution here is to
stop data transmission (to avoid flooding the network
with packets that cannot be delivered) till the TCP
sender/receiver get reconnected.

C. TOPOLOGY AND ENVIRONMENT

The location of nodes and the nature of their
surrounding environment determine inter-node

reachability and the amount of received interference [3].
If the nodes are located close to each other, there will be a
greater chance that data will not have to make as many
hops as in a network where the nodes are further apart.
Also, networks with a dense concentration of nodes will
experience more contention for the available capacity and
hence more collisions and interference leading to high
TCP packet loss and thus frequent TCP sender congestion
control algorithm triggering. On the other hand, walls and
objects that hinder radio transmission decrease the effect
of high node density.

D. LINK FAILURES

In case of nodes’ mobility, each node might move out
of the communication range of old neighbors or into the
communication range of new ones. This can break the
established routes (link failures) and trigger the
establishment of new ones within the network. The
implemented ad-hoc routing protocol is always in charge
of recovering from link failure and allowing to maintain
the communication session between the involved end
points. Usually, a broken route results in performance
degradation, since no data can be exchanged during the
time where no new route available. In fact, high mobility
is not always a bad thing for ad-hoc networks. Some
authors have observed that mobility can increase
performance by distributing traffic more evenly over the
network [4]. The problem of TCP in the case of link
failure is that after resuming the data communication
session, TCP sender starts from the Slow-Start phase,
with minimum CWND over the links. Indeed, during a
link failure event, multiple data packets can be lost at
once. Thus, TCP sender shrinks its CWND to minimum
assuming that the loss is due to congestion. However, in
case of link failure, the new discovered route might have
higher link capacity compared to the lost one. Thus, TCP
sender will waste the available bandwidth (which is a
scarce network resource) over the connection in this case.

E. POWER CONSTRAINTS

In MANETs, the devices are battery operated.
Obviously, in order to ensure good connectivity of the
network, the lifetime of network nodes should be
maximized. Increasing this lifetime can be done through
minimizing the node’s energy consumption (i.e.
designing network protocols that lead to less energy
consumption). In addition, losing a node due to battery
depletion leads to broken communication sessions (link
failure) even if the node is not the sender or the receiver
side of that session. This is because each node within the
network forwards data packets when it is involved in
multi-hop path.

III. RELATED WORK

In this section, we discuss the main TCP congestion
control enhancements proposed in order to improve its
performance within wireless and ad-hoc networks. Loss
differentiation algorithms can be categorized into two
categories [5]: (i) implicit or end-to-end differentiation,
and (ii) explicit loss differentiation algorithms. Unlike the

implicit ones, explicit algorithms use agents that are
deployed on the network’s intermediate nodes. End-to-
end or implicit solutions could involve the sender side
only (e.g. TCP Westwood) [6] [7] or both the sender and
receiver sides (e.g. the 3 Duplicate ACKs sent by the
receiver to notify the sender of a packet loss).

A. IMPLICIT LOSS CLASSIFICATION ALGORITHMS

TCP Westwood is an example of implicit loss
classification algorithms. TCP Westwood [6] [7] [8] is a
sender-side modification of TCP New-Reno [9] that
estimates the connection bandwidth based on the rate of
the received ACKs. TCP Westwood uses the estimated
bandwidth to adjust and set its CWND and Slow-Start
threshold parameters. This is in contrast to traditional
TCP congestion control implementation, where both
CWND size and Slow-Start threshold are halved
whenever a data packet loss is detected within the
connection [10]. It had been shown in the literature [8]
that this bandwidth estimation algorithm enhances the
performance of TCP, in front of random, sporadic data
packet losses (wireless channel related errors). In [11] the
authors illustrate that, in the link failure case, both TCP
New-Reno and TCP Westwood recognize the packet loss
with RTO expiration. Thus, both react the same way by
backing off for a while and entering Slow-Start phase. In
the link failure case, the average goodput of TCP
Westwood is less than that of TCP New-Reno [9]. This is
due to the lost ACKs. Indeed, in order to estimate the end-
to-end bandwidth and discriminate among loss causes,
TCP Westwood relies on the received acknowledgments.
In a situation where there are several acknowledgments
lost, this may lead to a wrong estimation of the end-to-
end bandwidth and consequently to a TCP Westwood
misbehavior. We also found that TCP Westwood has
higher energy consumption per received bit than TCP
New-Reno in most cases [11]. It can also be noticed that
TCP Westwood energy consumption gets worse when
wireless channel conditions degrades (i.e. increase of the
Bit Error Rate). Its dependence on RTT measurements to
calculate the estimated bandwidth is also responsible of
this effect. Similarly to the link failure case, as the Bit
Error Rate (BER) increases over the wireless channels,
the returned ACKs become prone to loss and corruption.
These lost or corrupted ACKs can yield to mistaken
estimated bandwidth calculations. Another enhancement
of TCP’s congestion control algorithm is the network
congestion avoidance algorithm implemented within TCP
Vegas [12]. TCP Vegas relies on measured RTT values of
sent packets to extend Reno’s retransmission
mechanisms. According to this measurement, the RTO
value is updated. When a duplicate acknowledgement is
received, Vegas checks if the difference between the
current time and the timestamp recorded for the first
unacknowledged segment (i.e. its RTT) is greater than the
timeout value. If so, then it retransmits the segment
without having to wait for three duplicate
acknowledgements. This change helps TCP Vegas to
detect losses much sooner than TCP Reno [12] and other
variants. Also, TCP Vegas uses RTT values to calculate
the actual CWND in the network. Hence, by comparing

this value with the expected throughput in the network,
TCP Vegas decides how to adapt its CWND after loss
episodes. TCP Vegas still contains Reno’s coarse-grained
timeout code as a fallback mechanism. This enhancement
improves the performance of TCP in term of throughput
as it discovers data packets losses faster than the other
variants and in turn recovers from these losses faster, in
the case of good estimation or measurement of the RTT
values over the connection. But, in case of wrong RTT
values measurement, as when the connection starts and
there is already congestion over the network links, the
CWND calculation will be wrong and might cause a
persistent congestion over the connection.

B. EXPLICIT LOSS DIFFERENTIATION ALGORITHMS

Explicit loss identification can be performed through
different estimation techniques. In [13], for example, a
sender-side method of end-to-end loss differentiation and
adaptive segmentation (Robin) is proposed, for enhancing
TCP performance in heterogeneous2 networks. This LDA
enables the TCP sender to distinguish congestion from
wireless induced losses. Moreover, in order to improve
the error recovery phase during a non-congestion period,
an adaptive segmentation algorithm is proposed. This
algorithm enables the TCP sender, if packet loss is
detected, to retransmit smaller packets, having aggregate
payload equal to the payload of the lost packet.
Decreasing segment size reduces the Packet Error Rate
(PER) [14]. In the case of high propagation delays over
the network, the evaluation results of this algorithm show
that the improvement is negligible. We have to note here
that the proposed solution assumes that only the last hop
is a wireless link. While in MANETs, all the
communication links are wireless channels and the
propagation delay may vary significantly compared to the
case of a single hop wireless network. In [15] the authors
propose a cross-layer solution based on two LDA
algorithms in order to classify the loss cause on 802.11-
link and react accordingly. The first LDA scheme, acting
at the MAC layer, allows differentiating losses due to
signal failure caused by displacement or due to noise
from other loss types. In this case, it adapts the behavior
of MAC layer to avoid a costly end-to-end TCP
resolution. The second LDA scheme, which acts at the
TCP layer, differentiates losses due to interferences from
those resulting from congestion and adapts TCP behavior
accordingly. The work done here is considering only
single hop (last hop) wireless networks. The Spike
Scheme [16], at the receiver side, measures one-way
delays. The receiver switches between congestion state
and wireless state according to a certain threshold. If the
delay exceeds this threshold, it is a congestion state.
Otherwise, it is a wireless state. ZigZag Scheme
presented in [17], extends the Spike scheme to include
both mean and standard deviation values of the measured
delays as well as the number of packet losses when
computing the delay threshold used. According to this
calculation, the higher the number of packet losses, the
greater the threshold beyond which a congestion state is

2 Mixed wired/wireless environments.

assumed. In other words, the wireless state becomes the
most likely cause of data packet losses.

From the above, we can see that most of the work done
in this domain addresses the problems of TCP within
wireless infrastructure networks. All these contributions
assume that the wireless channel connection is only the
last network’s hop. However, in MANETs, all the
communication channels are wireless links. In addition,
the proposed LDA that addresses the link failure problem
is implemented at the MAC layer level and not at the
Transport layer. The cross-layer solutions may
complicate the deployment and the acceptance of the
solution. Furthermore, such solution is also proposed for
one-hop wireless networks and its extension to wireless
multi-hop ad-hoc networks is not straightforward. We
will see in the next section that a link failure case within
MANET requires a specific reaction from TCP in order to
recover from packet loss. Link failure situations within
such networks introduce burst data packet loss over the
connection. Although that burst losses could be the result
of a network congestion event, the reaction of TCP in
front of link failure data losses assuming that it is due to
network congestion is an aggressive, inefficient reaction.

IV. ENHANCING TCP PERFORMANCE WITHIN MANETS:
TCP-WELCOME

MANETs, suffer from the effect of wireless channels
(e.g. fading, multi-path routing, interference), the effect
of ad-hoc network environments (mainly link failure due
to mobility or battery depletion) in addition to the
network congestion effects due to buffers overflow.
Hence, we have three different reasons (not only two as
discussed in previous researches) to lose data packets
within MANETs. Therefore, we propose new TCP loss
differentiation and loss recovery algorithms that can
distinguish among these three loss situations within
wireless ad-hoc network environments. This section is
organized as follows: we start by presenting the main
algorithms of TCP-WELCOME: (i) TCP Loss
Differentiation Algorithm that is used to classify the data
packet loss cause and (ii) TCP Loss Recovery Algorithm
used to recover from each loss type.

A. LOSS DIFFERENTIATION ALGORITHM (LDA)
With respect to all the concerns and suggestions

discussed above, we need an adapted LDA algorithm that
enables TCP to correctly classify the cause of data packet
losses within MANET environments. This algorithm
should be able to differentiate between the most common
data packet loss causes in MANETs; taking into
consideration and dealing with new loss causes that had
not been well investigated before (i.e. link failure). In
order to decrease the execution overhead of TCP
algorithms and the interaction between the intermediate
nodes within the network, our LDA and LRA algorithms
are end-to-end sender side modifications to the legacy
TCP (i.e. TCP New-Reno). TCP-WELCOME relies on
the evolution of RTT samples of sent packets at the
sender side in order to take its decisions. We will see later

how RTT samples evolution can be used to classify
different data packet loss causes.
In order to detect the packet loss cause, let)(, tq id and

)(, tP id
 be the queuing and processing delays of node i at a

given time t respectively, while)(, tp ld
 is the propagation

delay over the link l between two consecutive nodes of
the communication path at a given time t.

Fig. 1 illustrates the delays experienced by a TCP sent
data packet over the connection until receiving the ACKs
at the sender side. Thus, RTT value of a sent packet over
a TCP connection, where the route contains n hops in the
forward path between the source and the destination and
m hops in the reverse path (from the destination towards
the source), at time t is calculated as follows:

!!
==

+++++=
m

i
idldid

n

i
idldid tPtptqtPtptqtRTT

1
,,,

1
,,,)]()()([)]()()([)(

(1)

Henceforth, we will consider only the propagation and
queuing delays as these values are highly affected by
network changes. Whereas, processing delay depends
solely on the communication node capabilities and not on
network conditions. It is obvious that, when there is a link
failure within the network, the propagation delay will
change according to the new recovered route. Moreover,
with network congestion, the queuing delay will increase.
The next section describes the proposed Loss
Differentiation Algorithm (LDA) for TCP enhancements.
We will later discuss how TCP should adjust its
parameters (RTO, CWND, and SSThreshold) according to
the identified loss cause.

Source Destination

Data
packet sent

Acknowledgement
Received

)(, tp id

)(, tp id

)(, tP id

)(, tq id

)(, tq id

RTT

Figure 1 Round Trip Time (RTT) of a TCP sent data packet

1) Coupling Loss and Delay for Loss Differentiation: In
this section, we identify the basic concept of our
proposed LDA in order to classify the different data
packet loss causes over a TCP connection. The main idea
is based on observing the history of RTT samples
evolution within the network and the way in which TCP
identifies the data packet loss (Fig. 2). Next, we will
discuss how TCP can use RTT values as an indication of
each type of data packet loss.
a) Network Congestion Event: When the network suffers
from a congestion situation, the queuing delay increases
as the nodes’ buffers are filled with time. So, when a
packet loss occurs and the evolution of RTT samples at
the sender side is seen to be increasing gradually, the loss
is more likely to be due to network congestion. This
remains true regardless of how TCP recognizes data

losses; 3 Duplicate ACKs or RTO expiration. This only
gives information about the importance of the congestion
and thus the actions to be undertaken in order to recover
from it. Fig. 3 gives an example of RTT evolution in the
case of network congestion. It is clear from the figure,
that before losing data packets due to network congestion,
the evolution of RTT values over the TCP connection
increases gradually. Such gradual evolution is the
indication that we consider for an imminent network
congestion episode.

3 Duplicate ACKsRTO

RTT evolution is
almost Constant

RTT evolution
increases With time

Wireless channel errorsLink Failure

Network Congestion Scenario

TCP packet loss recognition

RTT history evoulution

!
Figure 2. TCP Proposed Loss Differentiation Algorithm

Figure 3. RTT Variations within wireless ad-hoc network

(Network Congestion)

b) Wireless Channel Related Losses: If the evolution of
RTT samples over the connection is not highly fluctuating
(i.e. staying around an average value) and the data packet
loss is identified through three Duplicate ACKs, thus the
data packet loss is due to wireless channel inefficiency on
one of the links over the communication path. While in
wireless channel related losses, both queuing and
propagation delays are almost constant, and RTT samples
over the connection should not experience high
fluctuations with time. Additionally, when there is a valid
route between the source and the destination, despite the
presence of link errors, the source can always receive
ACKs from the destination. The corruption of ACKs is of
a lesser probability since the ACK packet size is relatively
small. Thus, in the case of wireless channel induced
losses, RTT samples will stay around an average value (±
RTT_THRESHOLD):

.)]()([)]()([)(
1

,,
1

,, ConsttptqtptqtRTT
m

i
ldid

n

i
ldid !+++= ""

==

(2)

Hence, if a packet loss is identified by the reception of
three Duplicate ACKs and at the same time we notice that
RTT values stays almost constant, this means that data
packet losses over the connection are more likely to be
due to wireless channel errors.

c) Link Failure Loss Event: As stated previously, in case
of link failure, TCP may experience packet losses in a
burst. At the same time, we can notice that before such
event there is no reason to have an increase in the RTT
value (as no congestion is foreseen). From this we can
state that, if the evolution of RTT samples over the TCP
connection is relatively constant and TCP recognizes data
packet losses through RTO expiration, then data packet
loss is more likely to be due to a link failure situation
along the route towards the destination. We should also
note that in the case of link failure, after link loss
recovery, the following observations could be noticed:
both Propagation and Queuing delays change suddenly
since the new discovered route might (i) not be having
the same length (i.e. number of hops) as the lost route, or
(ii) be more/less loaded than the lost one. In the above
simulated link failure situation (Fig. 4), we can see that
RTT evolution, after a certain time of the simulation’s
onset (during which the ad-hoc routing protocol finds a
route towards the destination), the connection enters in a
steady state phase where the RTT evolution stays almost
constant. The Figure shows that before the link failure
event, RTT fluctuation is not high and can be considered
within an average value. Actually, in the event of link
failure, two situations may occur depending on the time
required by the ad-hoc routing protocol to recover the
failed link or to find an alternative one: (i) If this time is
shorter than TCP’s RTO. TCP identifies packet losses
through duplicate ACKs. When the TCP sender checks
the evolution of RTT samples and finds them relatively
constant, it will classify the loss as wireless-channel
related. TCP, then, will verify the CWND and modify it to
be relevant to the Slow-Start threshold (as will be seen
below). This action is less aggressive compared to the
traditional TCP assumption that losses are due to network
congestion. (ii) If this time is longer than TCP’s RTO.
TCP sender identifies data packet losses through RTO.
When the TCP sender checks RTT samples’ evolution
and finds them almost constant, TCP will classify the
packet loss as link failure related and reacts accordingly.

Figure 4. RTT Variations within wireless ad-hoc network (link failure)

B. LOSS RECOVERY ALGORITHM (LRA)
Upon identifying the packet loss cause through the

proposed LDA, TCP-WELCOME should react with the
most appropriate action accordingly (Fig. 5).
TCP reaction should be as follows:

! When wireless errors increase over the network
channels, it is unnecessary to stop data transmission or to
decrease TCP’s transmission data rate after a loss event.

! In case of link failure within the network (i.e. a
broken route between the communicating end points), it
will be sufficient to stop data transmission till an
alternative route towards the destination is found. Route
re-establishment/recovery is the responsibility of the
implemented routing protocol. The transmission rate here
will be adjusted according to the available bandwidth of
the new route. It is obvious that, the length and the load
of the communication path impact the Round Trip delay
Time (RTT) between the end points. Hence, it would be
necessary, in this case, to recalculate both the TCP’s
CWND and RTO values according to the characteristics
(length and load) of the new route. We notice here, that
this reaction of TCP-WELCOME in front of data link
failure, avoids the effect of the previously presented
“serial time out phenomena”. Serial time out phenomena
could be due to the unawareness of the TCP source about
data link failure event within the path, and thus it keeps
sending data over the lost link.

! When there is a congestion situation in the network,
TCP should keep its traditional behavior. It reacts
according to how the congestion had been detected (3
Duplicate ACKs or RTO). In all congestion cases that are
detected through retransmission time out, TCP stops data
transmission during a certain period of time and resumes
it afterwards with a reduced data transmission rate.

In the following sections, we explain how the TCP
connection parameters (CWND and RTO) are adjusted
after each data packet loss event over the connection.
Before that, let us explain our interest in these two
parameters. Indeed, the way in which TCP adapts its
CWND has a direct impact on its performance in terms of
throughput and energy consumption. More transmitted
and less retransmitted data packets over the connection
leads to better exploitation of the available bandwidth.

High BER over the wireless
communication channels Network Congestion Lost link within the route between end points

1- Retransmit lost packets.
2- Continue data

transmission normally.

Taditional TCP
Congestion Control

Algorithm.

1- Stop data transmission til finding an
alternative route.

2- Recalculate Retransmission Time Out (RTO)
regarding new route characteristics (length of route).

Data packet loss scenario
Loss Scenario

Detection

TCP LDA
(Loss Differentiation Algorithm)

TCP LRA
(Loss Recovery Algorithm)

Figure 2. TCP Proposed LDA and LRA Algorithms

Also, unnecessary packet retransmissions lead to higher
nodes’ energy consumption. Also, the time that TCP
waits; after the loss occurrence and before resuming the
communication session (RTO) has a severe impact on its
performance. For example, if the RTO is less than RTT
value over the connection, unnecessary data packet
retransmissions will lead to TCP performance
degradation in terms of both achievable throughput and
energy consumption. On the other hand, a too long RTO

value will in turn lead to resource waste as the available
bandwidth may not be well utilized. Hence, the efficient
adaptation of these values over the connection is crucial
to improve TCP performance.
a) RTO Adaptation Algorithm: The choice of the ad-hoc
routing protocol algorithm is important from two points
of view: (i) its robustness and promptness to recover from
a link failure, (ii) the overhead and frequency of its
routing information update messages which might result
in a congestion or traffic interference over the network
links. For example, if the time needed by the
implemented ad hoc routing protocol to recover from link
failures is longer than the TCP’s RTO, TCP triggers its
congestion control algorithm, and backs off for a certain
period of time, then enters Slow-Start phase. Also, it
might happen that the routing protocol recovers from the
link failure but TCP stays in the idle state, since TCP
does not know about the link recovery. On the other
hand, if the time taken by the ad-hoc routing protocol is
lower than TCP’s RTO, TCP may recover from data
packet loss without entering Slow-Start phase and
decreasing its CWND to minimum. Moreover, the
overhead of ad-hoc routing update messages could
aggravate the congestion situation over the TCP
connection. This leads to more congestion control actions
triggered to recover from the packet losses. Thus, it is
important to inform TCP of the route re-establishment or
at least to give it the ability to discover this information
as soon as possible to help TCP recover faster after a link
loss recovery without waiting unnecessarily and wasting
the network resources.

RTO estimation differs from RTT estimation in three
ways. First, the goal is not to accurately estimate the truly
maximal possible RTT, but rather a good compromise that
balances avoiding unnecessary retransmission timeouts
due to low RTO value, versus being slow to detect that a
retransmission is necessary when the RTO value is high.
Second, the TCP sender needs to estimate the RTT of data
packets, the time taken from the sender to the receiver
plus the time required at the receiver side to generate an
ACK. For example, a receiver employing the delayed
ACK algorithm may wait up to 500msec before
transmitting an ACK. Thus, estimating a good value for
RTO timer not only involves estimating a property of the
network path, but also a property of the remote
connection peer. Third, if loss is due to congestion, it
might be necessary that the sender waits longer than the
maximum RTT time, in order to give the congestion more
time to diffuse from the network. If the sender retransmits
as soon as the RTT time elapses, the retransmission could
also be lost, whereas sending it later would be successful
[18]. It has long been recognized that the setting of RTO
timer cannot be fixed but needs to reflect the network
path in use, and it generally requires dynamic adaptation
due to the great extent to which RTTs could vary over the
connection [19][20]. Thus, we propose that TCP-
WELCOME adjust its RTO value according to the loss
cause identified after each loss episode within the
network. In the case of wireless channel related errors, no
RTO estimation will be done. Whereas, when there is a

link failure case within the network, the RTO value have
to be modified based on the characteristics (length and
load) of the new route recovered by the routing protocol.
The RTT value and its evolution after the loss episode are
the best network performance parameters to depict those
characteristics. So, we propose to make the RTO
adaptation algorithm depending on the new RTT value
over the new recovered route. It is obvious that the
number of hops within the route between the source and
the destination as well as the load of each link/node along
this route affect the RTT value over the connection. Thus,
with different routes that have different number of hops,
we will have different end-to-end network delays. That’s
due to the fact that queuing delay is a variable component
of the overall network/connection delay. We note that
queuing delay is greatly influenced by the
network/connection loads, and is difficult to analyze
directly. In [21], the author shows the relation between
the link utilization and the queuing delay and states that
before that the link utilization reaches 70%, the queuing
delay has the tendency to increase quietly slow. While
after 70%, it increases sharply. Hence, Calculating the
RTO value in such a way reflecting the characteristics of
the new recovered route might be a good proposition.
Let

oldRTT be the delay over the lost old route, and
newRTT

be the delay over the new recovered route. Then, the new
RTO could be calculated as follows:

oldnew RTO
a

RTO ⎟
⎠

⎞
⎜
⎝

⎛=
1

and,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

new

old

RTT
RTT

a (3)

Where a, is the performance parameter modification
factor. The number of the RTT samples needed by TCP in
order to calculate its performance parameters
(RTO_NEW_RTT_SAMPLES) is determined through
simulations. This modification of RTO value is made only
in the case of link failure induced loss. Finally, let us
precise that if network congestion is recognized to be the
cause of the packet loss within the network, the RTO
evolution stays the same as in traditional TCP New-Reno.
b) TCP Data Transmission Rate Adaptation: Bandwidth
estimation algorithm is needed by TCP in order to well
adjust its data transmission rate. Determining the
available bandwidth of a new connection is a big issue in
TCP. Clearly, if a transport protocol sender knows the
available bandwidth, it would like to immediately begin
sending data at that rate. But in the absence of knowledge
about the available bandwidth, TCP must estimate it. In
legacy TCP, this estimation is currently made by
exponentially increasing the sending rate until
experiencing packet losses. The loss is taken as an
implicit signal that the rate had grown too big, so the rate
is effectively halved and the connection continues in a
more conservative way [18]. TCP bandwidth estimation
algorithm can be a sender-side or a receiver-side
estimation algorithm [18]. Aiming to make all our TCP
enhancements in the same side of the communication end
points (for ease of deployment), our proposed solution
will be based on a sender-side bandwidth estimation
algorithm. The implemented bandwidth estimation in
TCP-WELCOME is that proposed by Antonio Capone

and Fabio Martignon in [22]. TCP-WELCOME
bandwidth estimation is based on the idea of received
acknowledgements in order to estimate the number of
data packets over the network. This has the advantage of
eliminating the impact of interaction between
intermediate nodes over the connection on TCP
performance. We also apply a double filtering model to
avoid errors that may lead to wrong bandwidth
estimation. Estimating TCP data transmission rate is
dependent on the networks’ links capacity and the
queuing or buffering conditions within the network’s
nodes. In the following, we will explain how the
proposed TCP-WELCOME Loss Recovery Algorithm
(LRA) adjusts its data transmission rate according to the
data loss event (identified by LDA) within the network.

In the case of wireless channel related losses, there will
be no modification of the data transmission rate in TCP-
WELCOME. However, in the case of link failure along
the route between the source and the destination, TCP-
WELCOME should adjust its data transmission rate
according to the characteristics of the recovered link. In
this case, three propositions can be followed to decide
how TCP may adjust its data transmission rate:
1. TCP-WELCOME can keep its actual CWND (before
losses). Then, TCP-WELCOME adjusts it according to its
congestion control algorithm, if necessary.
2. TCP-WELCOME might decrease its CWND
automatically after data loss episode. We may propose to
half the actual CWND before loss. This could be
considered as a conservative action of TCP-WELCOME.
In this way, we minimize the risk of having a congestion
event over the links (i.e. in case the new route is more
loaded than the lost one). In this case, the CWND will be
calculated as follows:

 2
old

new

CWND
CWND = (4)

Where
newCWND , is the adjusted TCP-WELCOME data

transmission rate after data loss episode, and
oldCWND is

the actual data transmission rate (i.e. before the loss
episode). At the same time the new Slow-Start threshold
of TCP will be calculated as follows:

min*RTTBwdSSThreshol estimated= (5)

Where
estimatedBw , is the estimated available bandwidth

that is calculated by TCP.
3- TCP-WELCOME can adjust its CWND according to
the proportion of the new RTT value over the new
recovered route to that over the lost one. Here again, we
follow a conservative mechanism in order to prevent a
congestion episode over the network links. We take, here,
the realistic assumption that the new discovered route
contains other competing data traffic. With this
conservative algorithm we try to help enhancing TCP-
WELCOME fairness within the network. The new values
of CWND and SSThreshold will then be calculated as
follows; let

oldRTT be the delay over the lost old route,
and

newRTT be the delay over the new recovered route:

oldnew CWNDaCWND .= and,
!!
"

#
$$
%

&
=

new

old

RTT
RTT

a (6)

min* RTTBwdSSThreshol estimated= (7)

Thus a, is the performance parameter modification factor.
Again here, the number of the RTT samples needed by

TCP in order to calculate its performance parameters
(RTO_NEW_RTT_SAMPLES) is determined through
simulations. We must note here that, the CWND
adaptation algorithm tends to calculate and re-adjust the
initial CWND value over the connection after link loss
situation. Thus, for example, if the bandwidth of the new
discovered route is much larger than the previous lost
one, while queuing and propagation delays are almost the
same, TCP-WELCOME starts the communication after
route recovery from this calculated CWND value rather
than starting from minimum (1 segment), and then
increases its CWND normally. This CWND adaptation
algorithm tends to avoid wasting both available
bandwidth and energy consumption. Finally, let us
remind that TCP-WELCOME keeps its default
congestion control algorithm as in TCP New-Reno, in
case network congestion is foreseen to be the loss cause
over the links.
c) RTT Estimation Algorithm: Since our proposed
solution is based on RTT samples’ evolution history, it is
important to be sure that the RTT samples over the
connection are accurately measured. There are many
proposed algorithms in the literature describing different
mechanisms for measuring RTT samples [23]. Among
them: (i) Measuring from the first transmission, (ii)
Measuring from the most recent transmission, (iii)
Ignoring round-trip times for packets that have been
retransmitted, and (iv) Karn’s algorithm.

Karn’s algorithm accepts only good samples and uses
the retransmission back-off strategy to ensure that good
samples will eventually be available even if round-trip
times increase dramatically [23]. The main idea of Karn’s
algorithm is to use RTO in order to obtain accurate RTT
measurements that are not affected by retransmission
ambiguity. This algorithm does not take into
consideration the acknowledgements of retransmitted
data packets. Only the data packets that are
acknowledged without retransmissions will be considered
in RTO calculations. This action ensures that only
accurate RTT measurements will be taken and used.
Since Karn’s algorithm is recognized to be the best
performing option [23], we decide to implement it in our
proposed solution. The RTT measurements have high-
frequency characteristics that are desirable to detect. To
be able to follow step changes in the RTT mean value due
to increased network load, new competing traffic flows,
or sudden path changes, more advanced algorithms for
RTT estimation are needed. Currently most TCP versions
implement the first-order linear filter. In mobile ad hoc
networks, network parameters estimation is difficult
because network observations are noisy. Current RTT
estimator in TCP uses only one exponentially-weighted

moving average (EWMA) static filter [10]. When a new
observation is available, the EWMA filter produces a new
estimate using linear combination of the old estimate plus
the new observation, each given some weight. In
traditional EWMA filters, the gain that determines the
proportional weight assigned to the new observation and
the old estimate is fixed. When old estimates are given
more weight, the filter provides good stability; it resists
noise in individual observations. However, when new
observations are given more weight, the filter provides
good agility; it is able to detect performance changes
quickly. These filters are either able to detect true
changes quickly or to mask observed noise and transients,
but cannot do both at the same time. Ideally, one would
like to have a filter that is agile when possible but stable
when necessary, depending on current circumstances.
Therefore, filters should be adaptive. In [24], an adaptive
Flip Flop filter is proposed. The Flip Flop filter uses two
EWMA filters, one is agile with a gain of 0.1, and the
other is stable with a gain of 0.9. A controller selects
between the two. The underlying principle of this
controller is to employ the agile filter when possible, but
to fall back to the stable filter when observations are
noisy (RTT samples vary drastically and become noisy).

As previously discussed, our proposed LDA is based
on the history of RTT variation over a TCP connection. If
the network experiences congestion, the variation of RTT
samples will be noticeable. Otherwise, with wireless
channel errors the variation of RTT samples will be
relatively constant. Using a Flip Flop filter, we define an
upper control limit, ! (RTT_G_THRESHOLD) excess
value. Then, RTT samples that exceed that defined limit
(RTT_G_COUNT_THRESHOLD) are used as an
indication of a network congestion event. In [5], the
authors consider that much delayed packets (whose RTT
exceeds the control limit) as “outliers”! . Fig. 6 shows the
modified pseudo code of our proposed solution using the
Flip Flop filter. In our proposed algorithm, we keep ! at a
fixed value3. Furthermore, it is proved that Flip Flop filter
fairness is competitive to regular TCP and its overhead is
lower than that of TCP Westwood. Lowering overhead is
an important issue for battery-operated devices.

During TCP connection, TCP-WELCOME keeps
measuring RTT values and builds “RTT history”. First,
TCP-WELCOME should be able to decide either the
increase of RTT values happens occasionally or in a
consecutive manner. TCP-WELCOME considers the
connection is entering a congestion situation when the
number of increasing RTT values reaches a certain
threshold (RTT_G_COUNT_THRESHOLD). This
threshold is defined through simulations and is fixed in
such a way to avoid considering congestions early and
unnecessarily triggering the congestion algorithm, and in
the same time, to avoid late recognition of the congestion
situation over the connection. The variation of RTT
values over the connection should also be considered to
better identify when to consider that RTT values are

3 This value will be defined empirically through simulations to find the
most appropriate parameters.

noticeably increasing or it is just within the considered
average RTT values over the connection. Thus, another
threshold is defined and fixed (through simulations) that
corresponds to a certain deviation of the calculated
average RTT value over the connection
(RTT_G_THRESHOLD). If the calculated deviation or is
greater than the defined threshold, this is considered as a
considerable increase of RTT values over the connection.
TCP-WELCOME then triggers its counter to check if it is
an imminent congestion situation or no. In order to re-
initialize the TCP connection after link loss episode, we
define and fix (through simulations) a new variable that
represents the number of RTT samples required to
calculate and re-adjust the new connection’s parameters
(RTO_NEW_RTT_SAMPLES).

Finally, we mention that TCP-WELCOME’s average
RTT values are calculated using an identical filter to that
used in standard TCP implementation. Fig. 7 illustrates
the pseudo code of the proposed LDA and LRA
algorithms to enhance TCP behavior in MANETs.

if (loss detected by 3 duplicate acks) then
 if (l ! ")
 do wireless loss recovery algorithm // classifioed as wireless channel error loss
 else
 do congestion control algorithm // calssified as network congestion loss
 endif
elseif (loss detected by RTO) then
 if (l ! ")
 do link failure loss recovery algorithm // classified as link failure loss
 else
 do congestion control algorithm // calssified as network congestion loss
 endif
endif

!!!
Figure 6. pseudo code of TCP-WELCOME proposed LDA

if (loss detected by 3 duplicate acks) then
 if (no. of bits set in vector ! ") // wireless channel error loss
 ssthresh = Bwe * RTT_min

if (cwnd > ssthreshold)
 cwnd = threshold
endif

 else // calssified as network congestion loss
 ssthresh = Bwe * RTT_min

cwnd = 1
 endif
elseif (loss detected by RTO) then
 if (no. of bits set in vector ! ") // classified as link failure loss

ssthresh = Bwe * RTT_min
cwnd_n = a * cwnd_(n-1)
if (cwnd_n > ssthreshold)
 cwnd_n = threshold
endif

 RTO_n = (1/a) * RTO_(n-1)
 else // calssified as network congestion loss

ssthresh = Bwe * RTT_min
cwnd = 1

 endif
endif

!
Figure 7. Pseudo Code of TCP-WELCOME LDA and LRA Algorithms

V. TCP-WELCOME VALIDATION

We implemented TCP-WELCOME in the Linux kernel
2.6 since it supports pluggable congestion avoidance
modules [25]. Pluggable congestion avoidance modules
facilitate the introduction of new TCP congestion control
mechanisms within Linux. Then, we used “A Linux TCP
implementation for NS2” patch [24] in order to import
our Linux implementation code of TCP-WELCOME into
the network simulator NS-2 [27]. In this way, we had the
ability to test and validate our TCP-WELCOME
implementation code through NS-2 simulations and
realistic test-bed configuration measurements. In our

simulations, all nodes communicate through identical
wireless radio settings using the standard MAC 802.11
having a bandwidth of 2 Mbps and a radio propagation
range of 250 meters. FTP traffic is used with a 512 bytes
data packets size. The results of TCP-WELCOME
through both approaches are detailed in the following
sections. Table 1 defines the variables and default values
used in our TCP-WELCOME implementation and
validation tests. We note that these values have been
modified and tested several times in the implementation
and validation processes in order to get the best
performance parameters and calculations variables.

A. Test-Bed TCP-WELCOME Measurements
We evaluate TCP-WELCOME’s Linux kernel

implementation through a realistic test-bed configuration
to study its computational energy consumption. The
congestion control algorithm implemented in TCP
involves running a number of complex operations to
calculate the values of the different timers and other
performance parameters. These are CPU-intensive
operations that, in turn, lead to an increase in energy
consumption at the TCP Node's CPU. Thus, in order to
understand the effect of TCP congestion control
algorithm in the case of different data packet loss cases,
we need to study the TCP computational energy cost in
the event of each data packet loss situation. In this
section, we show and analyze the results of TCP–
WELCOME evaluation tests comparing them with four
of the most common TCP variants (TCP New-Reno, TCP
SACK, TCP Vegas, and TCP Westwood). The results are
discussed according to different data packet loss
situations within MANET environments (congestion,
interference, link loss, and signal loss).

TABLE I.

TCP-WELCOME Implementation Variables and Values

Variable Definition Value

a ; g Performance parameter
modification factor 2/3

RTT_SAMPLE_
COUNT

RTT sample count to take into
account 10

RTT_TRESHOLD RTT value excess threshold (%) 10

RTT_G_
THRESHOLD

RTT growth threshold (%) beyond
which values are considered as

growing
5

RTT_G_COUNT_
THRESHOLD

Number of consecutive growth
needed to trigger real congestion

scenario
5

DUPACK_
THRESHOLD Dupack threshold (usually 3) 3

RTO_NEW_RTT_
SAMPLES

We want a few RTT samples
before adjusting CWND and new

RTO
4

B. Test-Bed Configuration
Our test-bed configuration (Fig. 8) is composed of a

laptop playing the role of the sender side while the
receiver side is a Personal Computer (PC). Between the
communicating nodes we implement SEDLANE
(MANET emulation that will be described in the next
section), to get the effect of a MANET environment
between the sender and receiver sides. The laptop
communicates with the PC over a wireless link channel.
In order to calculate TCP energy consumption in the CPU

unit, we measure both (i) the total energy consumption
within the laptop, (ii) the energy consumed within the
wireless card for packet transmission/reception and (iii)
the idle energy consumed by the laptop. The
computational energy cost is the total energy
consumption after subtracting both the wireless energy
and the idle energy consumptions. Obviously, the
measurements are taken at the TCP sender side.
Synchronization is ensured between the communicating
end points and the PC where the measurements were
taken. In order to match the computational energy
consumption to the TCP operations, we use a minimal
Linux distribution in which we turn off the display, the
power manager and the x-server in order to minimize the
effect of any other running applications on the measured
current. The reason for turning off power management as
described in [28] is to better determine the current draw
that corresponds to TCP code execution. Additionally, all
the processes/daemons that are not necessary to TCP
operations are simply removed from the Linux
distribution making it minimal. By taking all these
precautions, we ensured that the remaining energy
consumption is due to TCP congestion control algorithms
execution and timer adjustments. Energy consumption is
determined by measuring the input voltage and current
draw using two Agilent 34401A digital multi-meters that
have a resolution of one millisecond. We do not use the
laptop’s battery to allow for a more steady voltage to be
supplied to the device [29]. In order to directly measure
the current and voltage draw of the wireless 802.11b
PCMCIA card, the card was attached to a Sycard
PCCextend 140A CardBus Extender [30] that in turn
attaches to the PCMCIA slot in the laptop. This way, we
can separately but simultaneously measure the current
draw of the laptop and the current draw of the wireless
802.11b PCMCIA card4.

C. SEDLANE: Simple Emulation of Delays and Losses
for Ad-hoc Network Environment

Unlike other evaluation studies, our objective here is to
apply realistic delay and loss rates to TCP connections
(i.e. delay and loss rates that correspond to MANET
characteristics). This is obtained with our MANET
emulation tool called SEDLANE [31]. As depicted in
Fig. 9, the main idea is to use a hybrid evaluation
approach that takes benefit from simulation results in
order to enhance real test-bed experiments. It allows
configuring Dummynet [32] pipes (i.e. defining packet
loss and delay rules) through NS-2 (Network Simulator-2)
[27] trace files. More precisely, SEDLANE uses NS-2
TCP trace file to identify the classes of packets by
gathering the packets that have similar RTT values. Then,
SEDLANE dedicates one pipe or communication channel
for each group of packets. Hence, delay values (i.e. RTT/2
on each way) and loss rates are distributed among classes.
Then, SEDLANE dynamically generates the Dummynet
rules to be applied on the packets. This way, we control
the different ad-hoc network parameters using simulation

4 Sycard PCCextend 140 CardBus extender card is a debug tool for
development and test of PC cards and hosts.

approach in order to make our experiments more realistic
compared to those previously used. For more details on
SEDLANE, the reader can refer to [31].
a) Validation Scenarios: In order to have a wide range of
results that help to better understand TCP behavior in
front of different data loss situations, we define different
data loss situations that represent the most common loss
scenarios in MANET environments. Our predefined loss
scenarios are: (i) network congestion, (ii) interference,
(iii) link losses and (iv) signal losses. We note that, we
implement Ad-hoc On-Demand Distance Vector (AODV)
[31] as routing protocol in our simulations. These
scenarios are implemented in NS-2 as explained below.

1) Creating Network Congestion: In this packet-loss
model, we create a congested node at the middle of a five
node topology. This is done by generating three TCP data
traffic flows that must pass by this intermediate node to
reach the other communicating end. Fig. 10 illustrates
this simulation scenario. Different levels of data
congestion can be generated by controlling the number of
TCP data flows crossing this node at a certain time.

2) Interference between Neighboring Nodes: Fig. 11
illustrates this scenario in which two TCP connections are
on-going in parallel. The main TCP connection (TCP
data flow 1) is disturbed by the interference generated
through the second TCP connection (TCP data flow 2).
Indeed, the node acting as forwarder for the main TCP
connection is placed within the interference range of the
second TCP connection sender. This situation creates
interference and thus data packet drop"

3) Link Failure and Communication Route Changes: In
this model we force TCP to change its communication
path by shutting down the intermediate node between the
communicating end points. In addition, we imply routes
with different number of hops (Fig. 12). Thus, once TCP
changes the communication route, the characteristics of
the path between the communicating nodes change. It is
obvious that the choice and the establishment delay of the
new route will be dependent on the implemented ad-hoc
routing protocol. Obviously, in this model, packet losses
and delay changes are implied through both link loss and
the characteristics of the recovered route.

DESTINATION / SOURCE
PC 2
Adresse IP: 192.168.1.3
System: Fedora Core 5 (Kernel 2.6.15-1)

SOURCE / DESTINATION
Laptop 1
Adresse IP: 192.168.2.3
Systeme: Fedora Core 5 (Kernel 2.6.15-1)
Functions+: Captures TCP connection
Statistics

Cross Cable

Wreless Link

Wireless Access Point
(NETGEAR WG602 v2)

IP Add: 192.168.2.2

PCCextend 140
CardBus Extender Card

Interface_bge0
Static IP Add.
192.168.1.1

Interface_Xl0
Static IP Add.
192.168.2.1

Network : 192.168.1.0
SubnetMask : 255.255.255.0

Network : 192.168.2.0
SubnetMask : 255.255.255.0

SEDLANE
PC 3
IP Adresses: if_bge0 (192.168.1.1)

 if_xl0 (192.168.2.1)
System: FreeBSD
Function: Introduces the effect of Ad
hoc network environement & router

Multimeter 2
Agilant 34401A
Function: Measuring TCP
Total Energy consumption

Multimeter 1
Agilant 34401A
Function: Measuring TCP
Communication Energy
consumption

 Figure 8. TCP Energy Consumption Measurements Test-bed

NS-2 Trace files Network ConfigurationNS-2
Simulations SEDLANE Test-bed

Figure 9. The principle of SEDLANE operation

4) Wireless Signal Loss: This scenario illustrates the
instability of wireless signals. The communicating nodes
loose the connection due to signal loss then they resume
the communication when the signal comes back. As
shown in Fig. 13, Signal losses are generated by moving
an intermediate node out of the radio range of its
connection neighbor for a while and then moving it back.

Source

Destination

TCP data flow_1

TCP data flow_2

TCP data flow_3

Congestion

#
Figure 10. Network Congestion Scenario

n4

TCP data flow_1

TCP data flow_2

> 250 m

200m200m

< 500 m
> 550m> 550m

Interference

#
Figure 11. Interference Scenario

Source Destination

Route_1

Route_2

R
ou

te
_3

#
Figure 12. Link Failure and communication route changes

Source Destination

TCP data flow

Source Destination

x
Figure 13. Wireless Signal loss scenario

Using simple network scenarios that define precise and
deterministic data loss situations is done explicitly in
order to study the exact reaction of TCP-WELCOME
faced with each data loss situation separately. In fact, we#

chose simple scenarios rather than having an “all-in-one”
scenario that may complicate the explanations process.

b) Test-Bed Results: In this section, we analyze the
results of TCP–WELCOME evaluation tests. The results
are discussed according to the different data packet loss
situations presented above and compared to other existing
TCP variants’ results.

1) Network Congestion Scenario:	 We can see from Fig.
14 that TCP-WELCOME computational energy cost is
slightly higher than that of TCP New-Reno in the event
of network congestion. This is due to the fact that TCP-
WELCOME verifies the cause of data packet losses
(LDA) before triggering its data loss recovery action
(LRA). While in TCP New-Reno, it stops data
transmission without searching the cause behind data
packet losses. This loss classification process in TCP-
WELCOME implies more CPU calculations which lead
to more computational energy cost. Also, we notice from
the same figure that TCP-WELCOME still outperforms
both TCP SACK and TCP Vegas in terms of
computational energy cost. Indeed, these two variants use
more complex algorithms without necessarily getting
better results in terms of throughput. Similarly, recall that
TCP-WELCOME sends more data than both TCP New-
Reno and TCP Westwood.

2) Interference Scenario:#Fig. 15 shows that TCP-
WELCOME has almost the same performance in terms of
computational energy cost as TCP Westwood. In the case
of data interference loss event, both of them have the
ability to correctly classify data loss cause as due to
wireless link problems. While, other TCP variants will
misinterpret data packet loss and consider it as if it was
due to congestion. Also, the high computational energy
cost of TCP Vegas is due to its high computational
processing cost at the reception of each ACK.

3) Link Failure and Signal Loss Scenarios: For both
Link failure and Signal loss situations, Fig. 16 and Fig.
17, we notice the high computational energy cost of TCP-
WELCOME compared to other TCP variants. Actually,
as none of the other variants has the ability to classify and
recognize the data packet loss cause over the connection,
they all react by stopping data transmission and enters the
slow-start phase. On the other hand, TCP-WELCOME
classifies the data packet loss cause and then reacts by
calculating and adapting its performance parameters#
(RTO, and CWND), which leads to better performance
over the TCP connection.
c) Simulation Results: NS-2 energy model does not
include the node’s TCP computational energy cost. It
applies only the communication energy cost. That is why
we thought of incorporating the results obtained through
the earlier described test-bed measurements into NS-2.
By including the computational energy cost of TCP’s
algorithms (Slow-Start, Fast Retransmit/ Fast Recovery,
and Congestion Avoidance), we can get the total energy
consumption at network nodes using NS-2 simulations.

We have integrated the obtained results into NS-2’s
energy consumption module and modified the code in

such a way that each time TCP enters into a specified
TCP function or algorithm it measures the time passed in
this function and then calculates the computational
energy cost to subtract it from the total available energy
for each node. This is done with all TCP algorithms.

This section provides the global TCP-WELCOME
validation results through our modified version of NS-2
that incorporates TCP computational energy cost. We
compare TCP-WELCOME’s performance with other
TCP variants (New-Reno, SACK, Vegas, and Westwood)
in terms of both total energy cost and average throughput.

1) Network Congestion Scenario: The results show that,
in network congestion, TCP-WELCOME has almost the
same performance compared to the other variants, in
terms of total energy consumption (Fig. 18). This is
expected as TCP-WELCOME reacts to congestion
similar to TCP New-Reno. Regarding the average
throughput, Fig. 19 shows that TCP-WELCOME has also
a comparable performance with most studied variants
(TCP New-Reno, TCP SACK, and TCP Westwood). This
result confirms the ability of TCP-WELCOME to
correctly classify as well as to recover from network
congestion induced-losses.

2) Interference Scenario: Fig. 20 and Fig. 21, show
clearly that in front of interference, TCP-WELCOME
outperforms all the other variants in terms of both
average throughput and total energy consumption. The
ability of TCP-WELCOME to classify the cause of
packet loss, as wireless signal related, and consequently
not decreasing its CWND, as most variants do, improves
its performance. We notice also that TCP-WELCOME
outperforms TCP Westwood, which was developed for
wireless networks, in both terms of throughput and
energy consumption. The ability of TCP-WELCOME to
classify correctly the wireless-related losses and not
decreasing its CWND or modify it in this case allows it to
outperform TCP Westwood.

3) Link Failure Scenario: In MANETs, it is obvious that
the communication paths between the communicating
end points can break (due to mobility or nodes’ batteries
depletion). Unlike other TCP variants, TCP-WELCOME
takes this situation into account. Fig. 22 and Fig. 23,
show that its average throughput and its energy
consumption are improved significantly compared to
those of other TCP variants. The ability of TCP-
WELCOME to detect that the packet losses are due to
link failure and to react appropriately leads to a much
better performance compared to all other TCP variants
which react assuming that losses are due to congestions
and decrease data transmission rate to minimum, thus,
leading to low throughput. In TCP-WELCOME,
adjusting data transmission rate according to the new
discovered route characteristics allows maximizing the
average throughput which also helps efficiently
conserving node’s energy.

4) Signal Loss Scenario: Losing the radio signal is
another reason to get disconnected from the other
communicating end. In link loss, the sender and the

receiver would search for another route to complete the
session. While in signal loss, we consider that such
alternate route is not available. After signal loss recovery,
most TCP variants’ will start the communication session
again, starting from the Slow-Start phase. This will be the
case, each time the communicating nodes get
disconnected due to signal loss. TCP-WELCOME,
however, outperforms them all in both terms of total
energy cost (Fig. 24) and average throughput (Fig. 25).
TCP-WELCOME does not decrease its CWND after data
packet loss due to an identified signal loss (as in other
TCP variants) leading to the observed throughput gain
and to an optimum usage of wireless channel bandwidth.

TCP Computational Energy Cost
(AODV-Congestion) (Joules/sec/sent byte)

0,00E+00

2,00E-07

4,00E-07

6,00E-07

New Reno SACK Vegas Westwood WELCOME

Figure 14. TCP Computational Energy Consumption

TCP Computational Energy Cost
(AODV-Interference) (Joules/sec/sent byte)

0,00E+00

2,00E-07

4,00E-07

6,00E-07

8,00E-07

1,00E-06

New Reno SACK Vegas Westwood WELCOME

Figure 15. TCP Computational Energy Consumption

TCP Computational Energy Cost
(AODV-Link loss) (Joules/sec/sent byte)

0,00E+00

2,00E-07

4,00E-07

6,00E-07

8,00E-07

New Reno SACK Vegas Westwood WELCOME

Figure 16. TCP Computational Energy Cost

TCP Computational Energy Cost
(AODV-Signal loss) (Joules/sec/sent byte)

0,00E+00

2,00E-07

4,00E-07

6,00E-07

8,00E-07

New Reno SACK Vegas Westwood WELCOME

Figure 17. TCP Computational Energy Cost

VI. CONCLUSION

TCP suffers from drastic performance degradation
when deployed within MANETs. This is due to the fact
that TCP cannot differentiate between different data

packet loss situations over the connection.
Misinterpreting the data packet loss cause and reacting as
if it is due to congestion leads to waste of network and
nodes resources (such as bandwidth and energy
consumption). Hence, the ability of TCP to classify
correctly the packet loss cause over the connection helps
to improve its performance within MANETs. In this
paper we introduced TCP-WELCOME, a new TCP
variant that is suitable for MANET environments. Unlike
other TCP variants, it uses a Loss Differentiation
Algorithm (LDA) that is able to identify accurately the
three common data packet loss causes within such
network: network congestion, wireless channel related
errors, and link failures. This is made by coupling delay
and loss information. Moreover, TCP-WELCOME adopts
a new Loss Recovery Algorithm (LRA) that reacts
efficiently to each identified data packet loss cause with
the most appropriate action. In order to show the
performance improvement of TCP-WELCOME we
implemented it into both Linux Kernel and the Network
Simulator version-2 (NS-2). We compared its
performances to different TCP variants under different
data packet loss scenarios (congestion, interference, link
failure, and signal loss). This comparative study showed
that both TCP average throughput and total energy
consumption have been significantly improved. We also
showed that TCP-WELCOME outperforms other TCP
variants in most cases thanks to its ability to identify
correctly the data packet loss cause through its LDA and
to take the most appropriate action to recover from data
losses thanks to its LRA.#

TCP Total Energy Consumption

1,E-08

4,E-08

7,E-08

New reno Sack Vegas Westwood Welcome

T
o

ta
l

E
n

e
rg

y
 (

J
o

u
le

s
/s

e
c
/B

y
te

)

Figure 18. TCP Total Energy Consumption

TCP Average Throughput

124

125

126

127

New Reno SACK Vegas Westwood WELCOME

Av
er

ag
e

Th
ro

ug
hp

ut
 (K

bp
s)

Figure 19. TCP Average Throughput

TCP Total Energy Consumption

0,E+00

7,E-07

1,E-06

2,E-06

New Reno SACK Vegas Westwood welcome

To
ta

l E
ne

rg
y

(J
ou

le
s/

se
c/

By
te

)

Figure 20. TCP Total Energy Consumption

TCP Average Throughput

0

150

300

450

600

New Reno SACK Vegas Westwood WELCOME

A
ve

ra
g
e

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Figure 21. TCP Average Throughput

TCP Total Energy Consumption

2,E-08

3,E-08

4,E-08

5,E-08

6,E-08

New reno Sack Vegas Westwood Welcome

T
o

ta
l
E

n
e
rg

y
(J

o
u

le
s/

se
c/

B
yt

e
)

Figure 22. TCP Total Energy Consumption

TCP Average Throughput

300

330

360

390

New Reno SACK Vegas Westwood WELCOME

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

K
bp

s)

Figure 23. TCP Average Throughput

TCP Total Energy Consumption

0,00E+00

5,00E-08

1,00E-07

1,50E-07

New reno Sack Vegas Westwood Welcome

T
o

ta
l

E
n

e
rg

y
(J

o
u

le
s/

se
c/

B
yt

e
)

Figure 24. TCP Total Energy Consumption

TCP Average Throughput

0

100

200

300

400

New Reno SACK Vegas Westwood WELCOME

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

K
bp

s)

!!!!!!
Figure 25. TCP Average Throughput

REFERENCES

[1] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M.
Senouci, "TCP WELCOME: TCP variant for Wireless
Environment, Link losses, and COngestion packet loss
ModEls", In the 1st International Conference on
COMmunication Systems and NETworkS (COMSNETS),
COMSNETS’09 , January, 2009.

[2] J. Liu and S. Singh, "ATCP: TCP for Mobile Ad Hoc
Networks," IEEE Journal on Selected Areas in
Communications, vol. 10, no. 7, July 2001.

[3] Ola Westin, "TCP Performance in Wireless Mobile Multi-
hop Ad Hoc Networks," SICS Technical Report T2003:24,
Swedish Institute of Computer Science ISSN 1100-3154,
2003.

[4] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and
M. Degermark, "Scenario-based Performance Analysis of
Routing Protocols for Mobile Adhoc networks," In
Proceedings of the fifth annual ACM/IEEE international
conference on Mobile computing and networking, p. 195–
206, August 1999.

[5] D. Barman and I. Matta, "Effectiveness of Loss Labeling in
Improving TCP Performance in Wired/Wireless Networks,"
Boston University, Technical Report, 2002.

[6] L. A. Grieco and S. Mascolo, "TCP Westwood and Easy
RED to Improve Fairness in High-Speed Networks," In
Seventh International Workshop on Protocols For High-
Speed Networks (PfHSN’2002), April 2002.

[7] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R.
Wang, "TCP Westwood: Bandwidth estimation for
enhanced transport over wireless links," In 7th Annual
International Conference on Mobile Computing and
Networking, ICMCN’01, July 2001.

[8] R. Wang, M. Valla, M. Y. Sanadidi, B. K. F. Ng, and M.
Gerla, "Efficiency/Friendliness Tradeoffs in TCP
Westwood," In ISCC 2002: Seventh IEEE Symposium on
Computers and Communications, July 2002.

[9] S. Floyd, T. Henderson, Gurtov, and A., "The NewReno
Modification to TCP's Fast Recovery Algorithm," RFC
3782, IETF, April 2004.

[10] V. Jacobson, “Congestion Avoidance and Control”, In
ACM SIGCOMM Conference Stanford, CA, pp. 314-329,
August 1988.

[11] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M.
Senouci, "A Performance Study of TCP variants in terms of
Energy Consumption and Average Goodput within a Static
Ad Hoc Environment," July 2006.

[12] L. S. Brakmo, S. W. O’Malley, and Larry L. Peterson,
"TCP Vegas: New Techniques for Congestion Detection
and Avoidance," ACM SIGCOMM’94, pp. 24-35, August
1994.

[13] M. Mancuso, "A Novel Scheme of Loss Differentiation and
Adaptive Segmentation to Enhance TCP Performance over
Wireless Networks," Politecnico di Milano, Dept. of
Electronics and Information.

[14] G. Xylomenos, G.C. Polyzos, Mahonen P., and M.
Saaranen, "TCP Performance Issues over Wireless Links,"
IEEE Communications Magazine, vol. 39, no. 4, pp. 52-58,
April 2001.

[15] L. Stéphane, Y. Ghamri Doudane, and G. Pujolle, "Cross-
Layer Loss Differentiation Algorithms to improve TCP
Performances in WLANs," in the 11th IFIP International
Conference on Personal Wireless Communications
(PWC'06), September 2006.

[16] Y. Tobe, H. Aida, Y. X Aida, and H. Tokuda, "Detection
of Congestion Signals from Relative One-Way Delay," IPSJ
Journal, vol. 42, no. 12, 2001.

[17] S. Cen, P. C. Cosman, and G. M. Voelker, "End-to-End
Differentiation of Congestion and Wireless Losses," In
MMCN2002: SPIE Multimedia Computing and
Networking, vol. 4673, pp. 1-15, January 2002.

[18] M. Allman and V. Paxson, "On Estimating End-to-End
Network Path Properties," ACM SIGCOMM, vol. 29, no. 4,
pp. 263-274, October 1999.

[19] J. Nagle, "Congestion Control in IP/TCP Internetworks,"
RFC 896, IETF, January 1984.

[20] D. Dykeman, M. Kaiserswerth, B.W. Meister, H. Rudin,
and R. Williamson W. Doeringer, "A Survey of Light-
Weight Transport Protocols for High-Speed Networks," vol.
38, no. 11, p. 2025–2039, November 1990.

[21] W. Stallings "High-Speed Network and Internets;
Performance and Quality of Service", 2nd Edition, Prentice
Hall, 2002, pp.148-156.

[22] A. Capone, F. Martignon "Bandwidth Estimates in the TCP
Congestion Control Scheme", Proceedings of Tyrrhenian
IWDC 2001.

[23] P. Karn and C. Partridge, "Improving Round-Trip Time
Estimates in Reliable Transport Protocols," In Proceedings
of ACM SIGCOMM ’87, August 1987.

[24] M . Kim and B. Noble, "Mobile Network Estimation," In
Mobicom 2001: The Seventh Annual International
Conference on Mobile Computing and Networking, July
2001.

[25]Pluggable congestion avoidance modules.
http://lwn.net/Articles/128681/.

[26]A Linux TCP implementation for NS2 Linux.
http://netlab.caltech.edu/projects/ns2tcplinux/ns2linux/.

[27] NS-2. http://www.isi.edu/nsnam/ns/.
[28] B. Wang and S. Singh, "Computational energy cost of

TCP," In Proceedings of IEEE INFOCOM’04, March 2004.
[29] P. Gauthier, D. Harada, and M. Stemm, "Reducing power

consumption for the next generation of pdas: It’s in the
network interface," In Proceedings of MoMuC’96,
Septembre 1996.

[30] Sycard technologies. (1996, July) Sycard technologies,
pccextend 140 cardbus extender. [http://www.sycard.com].

[31] A. Seddik-Ghaleb, Y. M Ghamri Doudane, and S.-M.
Senouci, "Emulating End-to-End Losses and Delays for Ad
Hoc Networks," In Proceedings of IEEE International
Conference on Communications, ICC’07, June 2007.

[32] Dummynet. http://info.iet.unipi/it/luigi/ip_dummynet/.
[33] C. E. Perkins and E. M. Royer, "Ad-hoc On-Demand

Distance Vector Routing," In proceedings of 2nd IEEE
Wksp. Mobile Comp. Sys. And Apps, WMCSA’99,
February 1999.

