

Université Pierre et Marie Curie - Paris VI

A Performance Study of

TCP Tahoe, Reno, New- Reno, SACK, Vegas and

WestwoodNR

in terms of Energy Consumption

within an Ad Hoc Environment

 Done by Alaa SEDDIK GHALEB
 Supervised by Sidi- Mohammed SENOUCI
 and Yacine GHAMRI DOUDANE

LIP6 - September 2004

 2

Contents

&+$37(5�,���,QWURGXFWLRQ ��� �
&+$37(5�,,���5RXWLQJ�LQ�$G�+RF�1HWZRUNV ��� �

2.1 Introduction.. 6
2.2 Classification of Ad Hoc Routing Protocols .. 6

2.2.1 Table-Driven Routing Protocols ... 7
2.2.2 Source-Initiated On-Demand Routing.. 12

2.3 Conclusion... 17
&+$37(5�,,,���(QHUJ\�$VSHFWV�LQ�$G�+RF�1HWZRUNV ��� ��

3.1 Introduction.. 18
3.2 Energy Consumption in OSI Layers ... 18

3.2.1 Physical Layer .. 18
3.2.2 MAC Sublayer .. 18
3.2.3 LLC Sublayer ... 18
3.2.4 Network Layer .. 19
3.2.5 Transport Layer.. 20
3.2.6 Application Layer.. 20

3.3 Energy Consumption due to L3/L4 Interaction ... 21
3.4 TCP Performance Issues in Ad Hoc Networks ... 23

3.4.1 Factors due to the Wireless Environment: ... 23
3.4.2 Factors due to the Mobile Ad Hoc Environment: ... 24
3.4.3 Other Factors that Affect Ad Hoc Networks: .. 25

3.5 Conclusion... 27
&+$37(5�,9���(QHUJ\�&RQVXPSWLRQ�LQ�7&3�9DULDQWV��� ��

4.1 Introduction.. 28
4.2 TCP Variants ... 28

4.2.1 Baseline TCP (Old Tahoe) ... 28
4.2.2 TCP Tahoe... 29
4.2.3 TCP Reno .. 30
4.2.4 TCP New-Reno .. 31
4.2.5 TCP SACK ... 32
4.2.6 TCP WestwoodNR ... 33
4.2.7 TCP Vegas... 34

4.3 Comparative Study of TCP Variants... 36
4.3.1 Simulation Scenarios ... 36
4.3.2 Energy Consumption of TCP Tahoe .. 37
4.3.3 Energy Consumption of TCP Reno.. 38
4.3.4 Energy Consumption of TCP New-Reno ... 39
4.3.5 Energy Consumption of TCP SACK .. 39
4.3.6 Energy Consumption of TCP WestwoodNR .. 40
4.3.7 Energy Consumption of TCP Vegas .. 41
4.3.8 Summary.. 41

4.4 Conclusion... 42
&+$37(5�9�±�(QHUJ\�&RQVXPSWLRQ�RI�7&3�9DULDQWV�LQ�0RELOH�$G�+RF�1HWZRUNV ������ ��

5.1 Introduction.. 43
5.2 Simulation Scenarios ... 43
5.3 Routing Protocol Effects on TCP Energy Consumption.. 43

5.3.1 Effects of AODV on Energy Consumption of TCP Variants... 45
5.3.2 Effects of DSR on Energy Consumption of TCP Variants ... 45
5.3.3 Effects of DSDV on Energy Consumption of TCP Variants... 46
5.3.4 Effects of OLSR on Energy Consumption of TCP Variants ... 47
5.3.5 Summary.. 48

5.4 Mobility Effects on TCP Energy Consumption.. 48
5.4.1 Mobility Effects on Energy Consumption ... 49
5.4.2 Mobility Effects on Average Connection Time ... 51

 3

5.5 Conclusion... 53
&+$37(5�9,���&RQFOXVLRQ�DQG�3HUVSHFWLYHV �� ��
$QQH[H�$�� ��
5HIHUHQFHV ��� ��
$GGLWLRQDO�5HDGLQJV �� ��

 4

CHAPTER I - Introduction

The advent of ubiquitous computing and the proliferation of portable computing

devices have raised the importance of mobile and wireless networking. A 0obile $d hoc

1(7work (0$1(7) is an autonomous collection of mobile nodes forming a dynamic

network and communicating over wireless links [Figure 1.1]. Ad hoc communication concept

allows users to communicate with each other in a multi-hop fashion without any fixed

infrastructure and centralized administration. Due to their capability of handling node failures

and fast topology changes, such networks are needed in situations where temporary network

connectivity is required, such as in battlefields, disaster areas, and large meeting places. Such

networks provide mobile users with ubiquitous communication capability and information

access regardless of location.

Figure 1.1 Ad- hoc Networking

TCP has gained its place as the most popular transmission protocol due to its wide

compatibility to almost all today’s applications. However, TCP as it exists nowadays may not

well fit in mobile ad hoc networks since it was designed for wire-line networks where the

channel Bit Error Rate (BER) is very low and network congestion is the primary cause of

packet loss. On the contrary of wired links, wireless radio channels are affected by many

factors that may lead to different levels of BER. Wireless channel behaviour cannot be

predictable, but in many cases, such channels are having a high BER that cannot be neglected

when studying ad hoc networks. Furthermore, node’s mobility can also affect TCP sessions in

ad hoc networks, which is obviously not the case of wired networks. Indeed, when nodes

move, link can be broken and TCP sessions using that links can loose packets. Hence, TCP

Ad hoc network

AP

PDA

PDA

gateway

 5

does not have the capability to recognize whether the packet loss is due to network congestion

or channel errors.

In addition to wireless channel behaviour, one of the most prominent features of Ad Hoc

networks is mobility of nodes. Thus, since the devices of such a network are battery operated,

they need to be energy conserving so that battery life is maximized. In the last few years, lot

of research efforts have been undertaken in order to design ad hoc networking protocols that

takes into consideration energy consumption aspects. Among them, a set of routing protocols

[28] that have been proposed in the last few years in order to ensure network connectivity

when minimizing energy consumption of mobile nodes at the same time. In the mean time,

only few works dealing with energy efficiency of TCP variants have been undertaken. The

objective of our work is, first, to study the performance of these TCP variants and their impact

on the energy consumed by mobile nodes. Then, our second objective is to study the effect of

IETF MANET routing protocols on TCP energy consumption. The result of this work can

then be used, in a near future, as a guideline to design new energy-efficient TCP variant for ad

hoc networks.

The remainder of this report is organized as follows: after introducing ad hoc networks and

their main characteristics in chapter 1, we will list the different IETF ad hoc routing protocols

in chapter 2. Chapter 3 contains an overview of recent work addressing energy efficiency and

low-power design within all layers of the wireless network protocol stack. At the end of the

same chapter, we will talk about TCP performance issues in ad hoc network environment. In

chapter 4, we will discuss the different versions of TCP and their effect on the energy

consumption of the ad hoc nodes. The effects of different ad hoc routing protocols and node’ s

mobility on the energy consumed by TCP variants will be studied in chapter 5. Finally, we

conclude our report and give some ideas for future work.

 6

CHAPTER II - Routing in Ad Hoc Networks
�
2.1 Introduct ion

The routing protocols for ad hoc wireless network should be capable to handle a very large

number of hosts with limited resources, such as bandwidth and energy. The main challenge

for the routing protocols is that they must also deal with node mobility, meaning that nodes

can appear and disappear in various locations. Thus, all nodes of the ad hoc network act as

routers and must participate in the route discovery and maintenance of the routes to the other

nodes. For ad hoc routing protocols it is essential to reduce routing messages overhead despite

the increasing number of nodes and their mobility. Keeping the routing table small is another

important issue, because the increase of the routing table will affect the control packets sent in

the network and this in turn will cause large link overheads [37].

2.2 Classif icat ion of Ad Hoc Rout ing Protocols

Routing protocols are divided into two categories based on how and when routes are

discovered, but both find the shortest path to the destination. Proactive routing protocols are

table-driven protocols; they always maintain current up-to-date routing information by

sending control messages periodically between the nodes which update their routing tables.

When there are changes in the structure then the updates are propagated throughout the

network. Other routing protocols are on-demand routing protocols, in other words reactive,

ones which create routes when they are needed by the source node and these routes are

maintained while they are needed [37]. Route construction should be done with a minimum of

overhead and bandwidth consumption taking into consideration the constraint of battery

lifetime. In real life systems, energy consumption is a major issue, and the routing protocols

affect the energy dynamics in two ways. First, the routing overhead affects the amount of

energy used for sending and receiving the routing packets, and second, the chosen routes

affect which nodes will have faster decrease in energy [36]. Ad hoc routing protocols must

operate in a distributed fashion allowing each node to enter and leave the network on its own,

and should avoid data looping in the network. For very dynamic topologies,

proactive protocols can introduce a large overhead in bandwidth and energy consumption

on the network. Reactive protocols trades off this overhead with increased delay, as the

route to the destination is established when it is needed based on an initial discovery

 7

between the source and the destination [36]. Following is a summary of routing

protocols studied in this work.

Figure 2.1. Ad hoc rout ing protocol categories

2.2.1 Table- Driven Rout ing Protocols

Table-driven routing protocols attempt to maintain consistent, up-to-date routing

information from each node to every other node in the network. These protocols require

each node to maintain one or more tables to store routing information, and they respond

to changes in network topology by propagating updates throughout the network in order

to maintain a consistent network view. The areas in which they differ are the number

of necessary routing-related tables and the methods by which changes in network structure

are broadcast. The following sections discuss some of the existing table-driven ad hoc

routing protocols [30].

2.2.1.1 Dest inat ion- Sequenced Distance- Vector Routing

The Destination-Sequenced Distance-Vector Routing protocol (DSDV) described in [31]

is a table-driven algorithm based on the classical Bellman-Ford routing mechanism [32]. �

The improvements made to the Bellman-Ford algorithm include freedom from loops �

in routing tables. Every mobile node in the network maintains a routing table in which �

all of the possible destinations within the network and the number of hops to each �

Ad - Hoc Routing
Protocols

Table Driven

 AODV DSR DSDV OLSR

Source-Initiated
On-Demand

Driven

 8

destination are recorded. Each entry is marked with a sequence number assigned by

the destination node. The sequence numbers enable the mobile nodes to distinguish

stale routes from new ones, thereby avoiding the formation of routing loops. Routing

table updates are periodically transmitted throughout the network in order to maintain

table consistency. To help alleviate the potentially large amount of network traffic that

such updates can generate, route updates can employ two possible types of packets. The

first is known as a IXOO� GXPS. This type of packet carries all available routing information

and can require multiple network protocol data units (NPDUs). During periods of

occasional movement, these packets are transmitted infrequently. Smaller LQFUHPHQWDO��
packets are used to relay only that information which has changed since the last full

dump. Each of these broadcasts should fit into a standard-size NPDU, thereby decreasing

the amount of traffic generated. The mobile nodes maintain an additional table where

they store the data sent in the incremental routing information packets. New route

broadcasts contain the address of the destination, the number of hops to reach the

destination, the sequence number of the information received regarding the destination,

as well as a new sequence number unique to the broadcast [31]. The route labelled with

the most recent sequence number is always used. In the event that two updates have the

same sequence number, the route with the smaller metric is used in order to

optimize (shorten) the path. Mobiles also keep track of the settling time of routes,

or the weighted average time that routes to a destination will fluctuate before the route

with the best metric is received (see [31]). By delaying the broadcast of a routing update

by the length of the settling time, mobiles can reduce network traffic and optimize routes

by eliminating those broadcasts that would occur if a better route was discovered in the

very near future [30].

 9

2.2.1.2 Optimized Link State Routing Protocol (OLSR)

The Optimized Link-State Routing Protocol (OLSR) is a proactive link-state routing protocol,

employing periodic message exchange to update topological information in each node in the

network, so the routes are always immediately available when needed. While having some

commonalities with OSPF, OLSR is specially designed to operate in the context of ad hoc

networks, i.e. in bandwidth-constrained, dynamic networks. Conceptually, OLSR contains

three generic elements: a mechanism for neighbour sensing, a mechanism for efficient

diffusion of control traffic, and a mechanism for selecting and diffusing sufficient topological

information in the network in order to provide optimal routes [38].

�
����������1HLJKERXU�6HQVLQJ�

Basically, neighbour sensing is the process through which a node detects changes to its

neighbourhood. The neighbourhood of a node, D, contains the set of nodes with which there

exists a direct link over which data may be transmitted (in either or both directions). Further

attributes can be associated with such a link, depending on the direction(s) in which

communication is possible. If traffic can only flow in one direction (e.g. if the nodes have

asymmetric transmitters), the link is said to be asymmetric. If traffic can flow in both

directions, the link is said to be symmetric. If there exist a symmetric link between node E and

node D, node E is said to be a symmetric neighbour of node D (and vice versa). In OLSR, the

concept of a two-hop neighbour is introduced. A two-hop neighbour of node D is simply a

Every node keeps a route table (Dest inat ion-

address, Metric, Sequence- number) for every

possible dest inat ion

 10

node which has a symmetric link to a symmetric neighbour of node D AND which is not node

D itself (i.e. node D can not be a two-hop neighbour of itself). A prime goal for OLSR is to be

completely independent of the underlying link-layer being used. While additional information

from the link layer, such as information about existence of links to neighbour nodes and link

quality, may be utilized by the protocol, care is taken such that the protocol can function

without. The advantages are that the protocol immediately can be deployed on most existing

and anticipated wireless network interfaces and operating systems. The neighbour sensing

mechanism in OLSR is designed to operate independently in the following way: each node

periodically emits a HELLO-message, containing the node’s own address as well as the list of

neighbours known to the node, including the status of the link to each neighbor (e.g.

symmetric or asymmetric). Upon receiving HELLO-messages, a node can thus gather

information describing its neighbourhood and two-hop neighbourhood, as well as detect the

“quality” of the links in its neighbourhood: the link from a node D to a neighbor E is

symmetric if the node a sees its own address if in the HELLO-message from E (with any link

status) - otherwise the link is asymmetric. Each node maintains an information set, describing

the neighbours and the two-hop neighbours. Such information is considered valid for a limited

period of time, and must be refreshed periodically to remain valid. Expired information is

purged from the neighbor- and two-hop neighbor sets.

����������*HQHULF�0HVVDJH�'LIIXVLRQ�

HELLO-messages are exchanged between neighbours only. They provide each node with

topological information up to two hops away. However, since ad hoc networks can be of

arbitrary size, a method is required for diffusing topological information into the entire

network. In OLSR, this is introduced in form of a generic way of efficiently diffusing

arbitrary control traffic to all nodes in the network. While being directly used in OLSR for

diffusion of topological information, the mechanism is build as an independent and efficient

MPR-flooding mechanism, and may thus be used to carry other types of control traffic (e.g.

for service discovery protocols etc). Due to limited bandwidth resources, the overhead from

control traffic should be kept at a minimum. This, for a control message destined to all nodes

in the network, implies that (i) all nodes ideally receive the message, while (ii) that not too

many duplicate retransmissions of the message occurs. A simple pure flooding strategy,

where all nodes forward a flooded message if they have not previously forwarded the message

meets the first part of the requirement: that all nodes, ideally, receive a copy of the message.

However, a given node might be receiving the same message from two neighbouring nodes.

 11

This is illustrated in Figure 2.2.a. The fact that a message is likely to be received by a node

more than once is a problem: using pure flooding, when a message is transmitted over the

wireless medium, all other nodes within radio range of the transmitting node will either have

to remain silent, or may experience message loss due to collisions. The OLSR protocol

applies an optimized flooding mechanism, called MPR-flooding, to minimize the problem of

duplicate reception of message within a region. The optimization is performed in the

following way: a node selects a subset of its symmetric neighbours, called the nodes

Multipoint Relays (MPR’s). Each node thus has a (possibly empty) set of MPR selectors

(neighbours, which have selected the node as MPR). A node, selected as MPR, has the

responsibility of relaying flooded messages from its MPR selectors. A message emitted by

node D is thus only retransmitted by node E if node D is in the MPR selector set of node E. As

illustrated in Figure 2.2.b, “careful” selection of MPRs (the filled nodes) may greatly reduce

duplicate retransmissions. While selecting MPRs, a node utilizes information describing the

two-hop neighbours, as acquired from the neighbor sensing process. All nodes select their

MPRs independently, possibly choosing different algorithms for selecting a “minimal” MPR

set. The invariant for the algorithms is that a message, emitted by the node and relayed by its

MPRs, would reach all the node's two-hop neighbours. An analysis of MPR selection

algorithms can be viewed as followed: A node is informed of its MPR selector set through

information piggy bagged to the HELLO-messages.

Figure 2.2. (a) Example of pure f looding, (b) dif fusion using Mult ipoint Relays.

The source of the message is the node in the center. Each arrow point ing to a

node indicates that the node receives a copy of the message. The f illed nodes are
selected by the center node as Mult ipoint Relay.

 12

Thus when using MPR-flooding, the forwarding rule for handling flooded control messages in

each node being:

1. The message must be meant to be forwarded (indicated by information in the header of

the message),

2. The message must not have been received by the node before, and

3. The node must have been selected as MPR by the node, from which the message was

received

The OLSR protocol specification defines a generic message format and an algorithm for

processing such messages. This includes time-to-live considerations, sequence numbers, etc.

����������7RSRORJ\�,QIRUPDWLRQ�

The MPR flooding mechanism is directly used by OLSR for diffusing topological

information to the network. In OLSR, all nodes with a non-empty MPR selector

set periodically generate a topology control message (TC-message). This TC-message

is diffused to all nodes in the network, using MPR flooding. A TC-message contains

the address of the node generating the TC-message, as well as the addresses of all the

MPR selectors of that node. Thus through a TC-message, a node effectively

announces reachability to all its MPR selectors. Since all nodes have selected an MPR

set, reachability to all nodes will be announced through the network. The result is that

all nodes will receive a partial topology graph of the network, made up by all reachable

nodes in the network and the set of links between a node and its MPR selectors. Using

this partial topology graph, it is possible to apply a shortest path algorithm for

computing optimal routes from a node to any reachable destination in the network.

A noticeable result is that the shortest path obtained from the partial topology yielded by

the TC-messages has the same length as the shortest path from the full topology.

The topological information in each node is valid for a limited period of time, and must

be refreshed periodically to remain valid. To improve reactiveness to network

dynamics, additional TC-messages may be generated. Expired information is purged from

the topology graph.

2.2.2 Source- Init iated On- Demand Routing

 13

A different approach from table-driven routing is source-initiated on-demand routing. This

type of routing creates routes only when desired by the source node. When a node requires a

route to a destination, it initiates a route discovery process within the network. This process is

completed once a route is found or all possible route permutations have been examined. Once

a route has been established, it is maintained by a route maintenance procedure until either the

destination becomes inaccessible along every path from the source or until the route is no

longer desired [30].

2.2.2.1 Ad Hoc On- Demand Distance Vector Routing
�
The Ad Hoc On-Demand Distance Vector (AODV) routing protocol described in [33]

builds on the DSDV algorithm previously described. AODV is an improvement on

DSDV because it typically minimizes the number of required broadcasts by creating

routes on a demand basis, as opposed to maintaining a complete list of routes as in the

DSDV algorithm. The authors of AODV classify it as a SXUH� RQ�GHPDQG� URXWH��
DFTXLVLWLRQ� system, since nodes that are not on a selected path do not maintain

routing information or participate in routing table exchanges [33]. When a source node

desires to send a message to some destination node and does not already have a valid

route to that destination, it initiates a SDWK� GLVFRYHU\� process to locate the other

node. It broadcasts a route request (RREQ) packet to its neighbours, which then forward

the request to their neighbours, and so on, until either the destination or an intermediate

node with a “ fresh enough” route to the destination is located. Figure 2.3.a illustrates

the propagation of the broadcast RREQs across the network. AODV utilizes

destination sequence numbers to ensure all routes are loop-free and contain the most

recent route information. Each node maintains its own sequence number, as well

as a broadcast ID. The broadcast ID is incremented for every RREQ the node initiates,

and together with the node’ s IP address, uniquely identifies an RREQ. Along with its

own sequence number and the broadcast ID, the source node includes in the RREQ the

most recent sequence number it has for the destination. Intermediate nodes can reply

to the RREQ only if they have a route to the destination whose corresponding destination

sequence number is greater than or equal to that contained in the RREQ.

During the process of forwarding the RREQ, intermediate nodes record in their route

tables the address of the neighbour from which the first copy of the broadcast

packet is received, thereby establishing a reverse path. If additional copies of the same

RREQ are later received, these packets are discarded. Once the RREQ reaches the

 14

destination or an intermediate node with a fresh enough route, the destination/

intermediate node responds by unicasting a route reply (RREP) packet back to the

neighbour from which it first received the RREQ (Figure 2.3.b). As the RREP is routed back

along the reverse path, nodes along this path set up forward route entries in their route

tables which point to the node from which the RREP came. These forward route

entries indicate the active forward route. Associated with each route entry is a route

timer which will cause the deletion of the entry if it is not used within the specified

lifetime. Because the RREP is forwarded along the path established by the RREQ,

AODV only supports the use of symmetric links. Routes are maintained as follows.

If a source node moves, it is able to reinitiate the route discovery protocol to find a new

route to the destination. If a node along the route moves, its upstream neighbour notices

the move and propagates a OLQN IDLOXUH�QRWLILFDWLRQ�message (an RREP with infinite metric)

to each of its active upstream neighbours to inform them of the erasure of that part

of the route [33]. These nodes in turn propagate the OLQN� IDLOXUH� QRWLILFDWLRQ� to their

upstream neighbours, and so on until the source node is reached. The source node may

then choose to reinitiate route discovery for that destination if a route is still desired.

An additional aspect of the protocol is the use of KHOOR messages, periodic local broadcasts

by a node to inform each mobile node of other nodes in its neighbourhood. Hello

messages can be used to maintain the local connectivity of a node. However, the use of

hello messages is not required. Nodes listen for retransmission of data packets to ensure

that the next hop is still within reach. If such a retransmission is not heard, the node may

use any one of a number of techniques, including the reception of hello messages,

to determine whether the next hop is within communication range. The hello messages

may list the other nodes from which a mobile has heard, thereby yielding greater

knowledge of network connectivity [30].

 15

Figure 2.3. AODV route discovery

Because the AODV protocol is a flat routing protocol it does not need any

central administrative system to handle the routing process. Reactive protocols like

AODV tend to reduce the control traffic messages overhead at the cost of increased latency

in finding new routes. In addition, AODV tries to keep the overhead of the messages small.

If any node has the route information in the Routing Table about active routes in the

network, then the overhead of the routing process will be minimal. The AODV has

great advantage in overhead over simple protocols which need to keep the entire route

from the source host to the destination host in their messages. The RREQ and

RREP messages, which are responsible for the route discovery, do not increase

significantly the overhead from these control messages. AODV reacts relatively quickly to

the topological changes in the network and updating only the hosts that may be affected

by the change, using the RRER message. The Hello messages, which are responsible for

the route maintenance, are also limited so that they do not create unnecessary overhead in

the network. The AODV protocol is a loop free and avoids the counting to infinity

problem, which were typical to the classical distance vector routing protocols, by the usage

of the sequence numbers [37].

2.2.2.2 Dynamic Source Routing

 16

The Dynamic Source Routing (DSR) protocol presented in [34] is an on-demand routing

protocol that is based on the concept of source routing. Mobile nodes are required to maintain

route caches that contain the source routes of which the mobile is aware. Entries in the route

cache are continually updated as new routes are learned. The protocol consists of two major

phases: route discovery and route maintenance. When a mobile node has a packet to send to

some destination, it first consults its route cache to determine whether it already has a route to

the destination. If it has an unexpired route to the destination, it will use this route to send the

packet. On the other hand, if the node does not have such a route, it initiates route discovery

by broadcasting a URXWH� UHTXHVW� packet. This route request contains the address of the

destination, along with the source node’ s address and a unique identification number. Each

node receiving the packet checks whether it knows of a route to the destination. If it does not,

it adds its own address to the URXWH UHFRUG�of the packet and then forwards the packet along its

outgoing links. To limit the number of route requests propagated on the outgoing links of a

node, a mobile only forwards the route request if the request has not yet been seen by the

mobile and if the mobile’ s address does not already appear in the route record. A URXWH�UHSO\�
is generated when the route request reaches either the destination itself, or an intermediate

node which contains in its route cache an unexpired route to the destination [35]. By the time

the packet reaches either the destination or such an intermediate node, it contains a route

record yielding the sequence of hops taken. Figure 2.4.a illustrates the formation of the route

record as the route request propagates through the network. If the node generating the route

reply is the destination, it places the route record contained in the route request into the route

reply. If the responding node is an intermediate node, it will append its cached route to the

route record and then generate the route reply. To return the route reply, the responding node

must have a route to the initiator. If it has a route to the initiator in its route cache, it may use

that route. Otherwise, if symmetric links are supported, the node may reverse the route in the

route record. If symmetric links are not supported, the node may initiate its own route

discovery and piggyback the route reply on the new route request. Figure 2.4.b shows the

transmission of the route reply with its associated route record back to the source node. Route

maintenance is accomplished through the use of route error packets and acknowledgments.

5RXWH� HUURU� packets are generated at a node when the data link layer encounters a fatal

transmission problem. When a route error packet is received, the hop in error is removed from

the node’ s route cache and all routes containing the hop are truncated at that point. In addition

to route error messages, acknowledgments are used to verify the correct operation of the route

 17

links. Such acknowledgments include passive acknowledgments, where a mobile is able to

hear the next hop forwarding the packet along the route.

Figure 2.4. Creat ion of the route record in DSR

DSR has the advantage that no routing tables must be kept to route a given packet, since the

entire route is contained in the packet header. The caching of any initiated or overheard

routing data can significantly reduce the number of control messages being sent, reducing

overhead. The primary disadvantages of DSR are that DSR is not scalable to large networks,

and that it requires significantly more processing resources than most other protocols. In order

to obtain routing information, each node must spend much more time processing any control

data it receives, even if it is not the intended recipient [36].

2.3 Conclusion

Ad hoc routing protocols are an important issue in ad hoc networks as they must have special

characteristics to cope with such networks. They must be reliable and conserve the rare

network resources at the same time. The choice of the routing protocol will affect

significantly the consumption of network limited resources (energy and bandwidth). The

study of that effect on bandwidth is out of scope of our work. Here, we will focus our study

on how they affect energy consumption in ad hoc networks.

 18

CHAPTER III - Energy Aspects in Ad Hoc Networks

3.1 Introduct ion

Significant power savings may result from incorporating low-power strategies into the design

of network protocols used for data communication. All the layers of the protocol stack were

the subject of proposals incorporating energy conservation [24]. This section summarizes

some of these proposals.

3.2 Energy Consumption in OSI Layers

3.2.1 Physical Layer

In the past, energy efficient and low-power design research has centered on the physical layer

due to the fact that the consumption of power in a mobile computer is a direct result of the

system hardware [24]. Several technologies are being developed to achieve low-power

consumption in the hardware layer by increasing the battery capacity and reducing the energy

consumption for the CPU, user interface and storage for the devices.

3.2.2 MAC Sublayer

The MAC (Media Access Control) is a sublayer of the data link layer. It interfaces with the

physical layer and is represented by protocols that define how the shared wireless channels

are to be allocated among a number of mobiles. One fundamental task of the MAC protocol is

to avoid collisions so that two interfering nodes do not transmit at the same time. Collisions

should be eliminated as much as possible since they result in retransmissions, which lead to

unnecessary power consumption. There are many MAC protocols: IEEE 802.11, EC-MAC,

and PAMAS. For example, power conservation in 3$0$6 (3ower $ware 0ulti-$ccess

3rotocol with 6ignalling) is achieved by requiring mobiles that are not able to receive and

send packets to turn off their wireless interface for a period of time.

3.2.3 LLC Sublayer

The logical link control (LLC) sublayer has the error control functionality. The two most

important techniques used for error control are $54 ($utomatic 5epeat 5equest) and)(&

()orward (rror &orrection). These two methods consume power resources due to

 19

retransmission of data packets and greater message overhead necessary in error correction.

Recent research has addressed low-power error control and several energy efficient link layer

protocols have been proposed [24].

3.2.4 Network Layer

The type of routing protocol affects the energy dynamics in two ways: (i) the routing

overhead affects the amount of energy used for sending and receiving the routing packets, and

(ii) the chosen routes affects which nodes will have a faster decrease in energy. Hence, [28]

has compared two proactive protocols ('6'9 - 'ynamic destination-6equenced 'istance

9ector and 2/65 - 2ptimized /ink 6tate 5outing) and two reactive protocols ('65 -

'ynamic 6ource 5outing and $2'9) in terms of energy consumption. It carried out a set of

simulations, including different parameters: node speed, node number, and traffic pattern.

0

40

80

120

0 2 15 30��� � � ��� �	�
 �

�
���
��
��
���
����

� �
�� ��
�

DSDV OLSR

DSR AODV

(a)

0

100

200

300

400

10 20 30 80��� � �! " #%$ &

' (
)*+
,-
.(
/0
1
1)
234
(
5 .0
6)
/7

DSDV
OLSR
DSR
AODV

(b)

0

40

80

120

2 4 128�9 :<; = > ? @�A B C D = E F

G H
IJK
LM
NH
OP
Q
QI
RST
H
U NP
V I
OW

DSDV OLSR

DSR AODV

(c)

0

40

80

120

160

5 10 20 30XZY�[�\] ^<_`[badce^`\

f g
hij
kl
mg
no
pq
r h
s
tu g
v mo
w h
nx

DSDV OLSR

DSR AODV

(d)

 Figure 3.1 Energy consumption as a funct ion of: (a) node speed (b) node number

(c) packet rate (d) source number

The effect of node speed is shown in Figure 3.1 (a). This experiment indicates that reactive

protocols use less energy than proactive protocols. Reactive protocols do not do any routing

when there is no traffic in the network, whereas proactive protocols are constantly consuming

energy by computing routes even when no data will be sent. We can see in Figure 3.1 (b), that

 20

reactive protocols outperform against proactive protocols when the node number grows. As

the number of nodes grows, so proactive protocols suffer from their constant updates. Thus,

proactive protocols have a scalability problem. Finally, Figure 3.1 (c) and Figure 3.1 (d) show

a similar behavior since the varying parameters concern the traffic. As the traffic increases,

DSDV and OLSR outperform AODV. Indeed, AODV cumulatively acquires two

characteristics, which are drawbacks in this context: periodical “ hello messages” and frequent

unnecessary route discoveries.

These conventional ad hoc routing protocols work towards optimal routes in terms of delay,

which mostly result in the shortest path. This would mean that nodes with higher node degree

might “ die” soon since they are being used in most cases. Therefore, several routing schemes

that take the power constraint into consideration for choosing the appropriate route have been

proposed [25] [26] [27]. These schemes establish routes that ensure that all nodes equally

deplete their battery power.

3.2.5 Transport Layer

TCP is a connection oriented transport layer protocol that provides reliable, in-order delivery

of data to the TCP receiver. TCP was developed to be deployed in wired network

environments. It is now considered as the default transport protocol for the new generation of

wireless networks. This arises from the fact that TCP will guarantee the interoperability

between Ad Hoc and wired networks. The problem with the adaptation of TCP to wireless

networks is because wireless links often suffer from high BER and broken connectivity. This

leads to a large number of retransmissions that unnecessarily consume battery energy. A

range of schemes, 5HQR and 1HZ� 5HQR for example, has been proposed to improve

performance of transport mechanisms, in particular TCP, on wireless networks. Although

some of these schemes led to great energy efficiency, they were not specially conceived to

reduce the energy consumption at the transport layer. Our work here consists of analyzing the

performance of different TCP variants in terms of energy consumption in order to find the

most appropriate one of them for the mobile ad hoc network environments.

3.2.6 Application Layer

Energy efficiency at the application layer is becoming an important area of research. For

example, APIs are being developed to assist software developers in creating programs that are

 21

more power conserving. The impact of power efficiency on database systems, multimedia

processing and transmission, is also considered by some researchers [24].

3.3 Energy Consumption due to L3/ L4 Interact ion

Since the compatibility with Internet is often desired, most mobile ad hoc implementations are

designed with the TCP/IP stack in mind. Thus, in this section we will discuss the energy

consumption due to the TCP/IP stack operations.

The computational energy cost of a TCP/IP session established by a wireless device can be

viewed as the total energy cost of the session minus the cost of the radio and the idle energy

cost of the connection (i.e. when the node is idle waiting ACKs or data segments [8][21].

To better understand which TCP/IP functions cost more energy, the computational energy

cost can be decomposed as follows:

• The cost of moving data from the user space into kernel space denoted as XVHU� ±WR�
NHUQHO�FRS\.�Note that this cost can be eliminated by using zero-copy [9], if available.

• The cost of copying the packets to the network interface card that denoted as NHUQHO�
WR�1,&�FRS\.

• The cost of processing in the TCP/IP protocol stack (TCP processing cost) which

includes:

y
 The cost of computing the checksum per packet (at sender and receiver),

y
 The cost of ACKs (at the receiver),

y
 The cost of responding to timeout events (TO) (at the sender this is the

processing cost plus NHUQHO�WR�1,&�FRS\ cost of the retransmitted packet),

y
 The cost of responding to triple duplicate ACKs (TD) (at the sender this is the

processing cost plus the NHUQHO�WR�1,&�FRS\ cost of the retransmitted packet) and

y
 Other processing costs such as window maintenance (at sender on receiving

ACKs), estimate round-trip time (RTT) (at sender), interrupt handling, and timer

maintenance.

Using the above decomposition, the total computational cost of a TCP session at the sender,

in which '�bytes of data are transmitted, can be written as follows:

 22

((D, MTU size) = XVHU�WR�NHUQHO�FRS\ for D bytes + checksum cost for D/MTU packets
+ ACK cost + NHUQHO�WR�1,&�FRS\ cost for D/MTU packets of size MTU
+ Number of TOs * TO copy and processing cost
+ Number of TDs * TD copy and processing cost + other processing costs

Note that the total energy (is written as function of the MTU (Maximum Transmission Unit)

size because different MTU sizes result in different total energy costs (as will be discussed in

the next section). The equation at the receiver can be deduced similarly.

Actually, the two copy costs are similar at the sender and at the receiver. However, the TCP

processing cost is somewhat different. At the sender the TCP processing cost includes

checksum, ACK processing, congestion window updates, timeout (TO) processing, triple

duplicate (TD) processing, timer processing, RTO computation, and other OS related costs.

At the receiver, TCP processing includes ACK generation, checksum computation, data

sequencing and receive window management. Thus, transmitting requires more energy than

receiving (Fig 3.2). B. Wang and S. Singh [8] showed that TCP processing cost is not high,

and is not the bottleneck to achieving high data rates, and that 60-70% of the energy cost (for

transmission or reception) is accounted for by the kernel-to-NIC copy operation. Of the

reminder, ~15% is accounted for in the copy operation from user space to kernel space with

the remaining 15% being accounted for by TCP processing cost, and that the cost of

computing checksums accounts for 20-30% of TCP processing cost.

Figure 3.2 Simplif ied Energy Consumption Prof ile

The energy consumed by an interface depends on its operating mode: in the sleep state, an

interface can neither transmit nor receive, so it consumes very little energy. To be able to

transmit or receive, an interface must explicitly transition to the idle state, which requires both

time and energy. In the idle state, an interface can transmit or receive data at any time, but it

 23

consumes more energy than it does in the sleep state, due to the number of circuit elements

that must be powered [24]. It can be seen also, that the transmission process is more

expensive than the reception one.

3.4 TCP Performance Issues in Ad Hoc Networks

Mobile Ad Hoc wireless networks have been proposed as the networking solution for

those situations where the network set up time is a major constraint and/or a

networking infrastructure is either not available or not desirable. Ad Hoc networks

allow mobile devices to exchange information using their wireless infrastructure without

the need of the fixed infrastructure and the attached specialized devices commonly found

in wired networks such as routers, switches, gateways, etc. As a result, every device in

ad hoc wireless network can take the role of an end system, a server, a router, gateway,

etc., or all of them at the same time. It is expected that the performance of TCP

will be affected considerably in ad hoc networks not only due to the effects of the

wireless environment but also due to specific issues only found in ad hoc networks

like mobility, routing, and energy constrains [16]. In mobile networks, such as �

ad hoc networks, TCP displays some undesirable patterns of behavior in the context �

of efficient energy expenditure because of its reliability feature [15]. For example, �

high channel delays in a mobile network causing the TCP timer to expire will force

TCP to unnecessarily retransmit the delayed packet and to consume more time and

energy resulting in network performance degradation. The performance of mobile

ad hoc networks will depend on many factors such as node mobility model, traffic

pattern, network topology, obstacle positions, and so on. To better understand the

effect of these factors, we will classify them into two categories: factors inherited from

the wireless environment, and factors due to the mobile ad hoc characteristics itself.

In the following, we will present some of the most important issues in a mobile ad hoc

network.

3.4.1 Factors due to the Wireless Environment:

3.4.1.1 The Effect of High Bit Error Rate (BER)

Bit errors cause packets to get corrupted which result in lost TCP data segments or

acknowledgements. When acknowledgements do not arrive at the TCP sender within a short

amount of time (the retransmit timeout or RTO), the sender retransmits the segment,

 24

exponentially backs off its retransmit timer for the next retransmission, reduces its congestion

control window threshold, and closes its congestion window to one segment. Repeated errors

will ensure that the congestion window at the sender remains small resulting in low

throughput [5]. While the appropriate behavior in such situation is to simply retransmit lost

packets without shrinking the congestion window to avoid the delay and the energy consumed

to increase the congestion window size. It is important here to mention that, in the case of

CSMA-CA (802.11) based networks; there will be of course some kind of losses. But on the

other hand, there will be an error correction algorithm, meaning that not all the packets will be

lost. In fact, some of hem will be corrected and resent again. This correction action will, of

course, introduce some delay in the network and in the mean time will waste some of the

bandwidth resource. Obviously, the delay introduced will increase the RTT value resulting in

poor throughput and high-energy consumption.

3.4.1.2 The Effect of Mult i- Path Routing

Some routing protocols maintain multiple routes between source and destination pairs, the

purpose of which is to minimize the frequency of route recomputaion. Unfortunately, this

sometimes results in a significant number of out-of sequence packets arriving at the receiver.

The effect of this is that the receiver generates duplicate ACKs that cause the sender (on

receipt of three GXSOLFDWH�$&.V) to invoke congestion control [5].

3.4.2 Factors due to the Mobile Ad Hoc Environment:

3.4.2.1 The Effect of Route Recomputat ion

When an old route is no longer available, the network layer at the sender attempts to find a new

route to the destination. It is possible that discovering a new route may take significantly

longer than the retransmission timeout interval (RTO) at the sender. As a result, the TCP

sender times out, retransmits a packet and invokes congestion control. Thus, when a new

route is discovered, the throughput will continue to be small for some time because TCP

at the sender grows its congestion window using the slow start and congestion

avoidance algorithm. This is clearly undesirable behaviour because the TCP connection

will be very inefficient. If we imagine a network in which route computations are

done frequently (due to high node mobility), the TCP connection will never get an

opportunity to transmit at the maximum negotiated rate (the congestion window will

 25

always be significantly smaller than the advertised window size from the receiver) [5].

Thus, it will be better to stop transmitting and resume it when a new route has been found.

3.4.2.2 The Effect of Network Part it ions

It is likely that the ad hoc network may periodically get partitioned for several seconds

at a time. If the sender and the receiver of a TCP connection lie in different partitions, all

the sender’ s packets get dropped by the network resulting in the sender invoking

congestion control. If the partition lasts for a significant amount of time (say several

times longer than the RTO), the situation gets even worse because of phenomena called

VHULDO� WLPHRXWV. A serial time out is a condition wherein multiple consecutive

retransmissions of the same segment are transmitted to the receiver while it is

disconnected from the sender. All these retransmissions are thus lost. Since the

retransmission timer at the sender is doubled with each unsuccessful retransmission

attempt (until it reaches 64 sec), several consecutive failures can lead to inactivity lasting

one or two minutes even when the sender and receiver get reconnected [5]. And

the appropriate solution here is to stop the transmission (to avoid flooding the network

with packets that cannot be delivered anyway) until that the sender get reconnected to

the receiver.

3.4.3 Other Factors that Affect Ad Hoc Networks:

Additionally, there are some other factors that can affect the mobile ad hoc network

performance in different ways. Even though they are not directly involved in the data

transmission they must be considered when studying ad hoc networks, because of their effects

on data transmission [4]:

3.4.3.1 Mobility

When nodes move around there is a possibility that they will move out of range of old

neighbors or into range of new ones. When that happens the ad hoc routing protocol may have

to find new routes to be able to maintain communication that involved these nodes. Usually, a

broken route results in performance degradation, since no data can be exchanged. To

overcome this problem the network layer should find a new route as quickly as possible to

resume the dropped communication. In fact, high mobility is not always a bad thing for ad

hoc networks. Some authors have observed that mobility can increase performance by

distributing traffic more evenly over the network.

 26

3.4.3.1 Topology and Environment

Where the nodes are located and the nature of the surrounding environment determines which

nodes can contact each other and the amount of interference from other nodes. If the nodes are

located close to each other, there will be a greater chance that the data will not have to make

as many hops as in a network where the nodes at further apart. On the other hand, networks

with a dense concentration of nodes will experience more contention for the available

capacity and also more interference. The environment affects the performance in a similar

way. Actually, walls and other objects that hinder radio transmissions will lower the effect of

high node density. It is found also that the energy consumption of a mobile node increases

with the distance between the two communicated nodes. For that, it will be better that the

nodes communicate through multi-hop network.

All the above factors affect the performance of a mobile ad hoc network in different ways, but

they are all having a great influence on the communication energy consumption. Typically,

communicating over wireless medium consumes more battery power than CPU processing

[6]. To increase the lifetime of an ad hoc node, it is important to reduce the communication

energy cost. On the other hand, energy efficiency does not only depend on the amount of the

avoidable extra data, but also on the total duration of the connection [6], meaning that longer

connections consume more battery power because of the idle energy consumed and

sometimes because of the retransmission action. In other words, if we can minimize the

communication time by using robust recovery algorithms to recover from loss error, we may

save a lot of energy consumed. M. Zorzi and R.R. Rao [3] found that the efficient usage of

energy is achieved when a scheme stops transmitting when the channel conditions become

adverse and resumes transmission when they improve. In fact, this is exactly what the window

adaptation algorithm of TCP does. That is even though that algorithm was designed for a

wire-line environment where energy is usually not an issue; its way of handling congestion

turns out to be very efficient in guaranteeing reduced energy consumption as well. In [11] M.

Zorzi and R.R. Rao found that as an interesting fact which shads a new light on the

effectiveness of TCP as a transport protocol for mobile wireless environments. Also, It has

been showed in [17][18][19] that, in the presence of burst packet errors (where many packets

are lost at once), backing off transmissions may in fact be the right thing to do, at least as long

as error bursts are long relative to the propagation delay of the connection. This is explained

by noting that in this case long error bursts are persistent conditions (as is congestion) [11]. In

fact, the throughput performance of TCP has been shown to be enhanced by the presence of

 27

bursty errors, as opposed to random errors [17][18][19]. In the following section, we will

discuss in more details the different versions of TCP and their impact on the energy

consumption of the mobile nodes.

3.5 Conclusion

Energy consumption in a network is not related to only one layer or only one operation, it is a

large aspect that contains many factors. It has been found that the energy consumption is

directly proportional to the duration of the communication session (connection time). Hence,

in our study here, we will use the average connection time as an indication of the energy

consumed in the network. In the mean time, we will study the effect of the ad hoc routing

protocols on the TCP variants, in order to verify the interaction between the network and

transport layers within ad hoc network environment.

 28

CHAPTER IV - Energy Consumption in TCP Variants

4.1 Introduct ion

When deploying TCP in mobile ad hoc networks, it has been found that TCP is incapable

of differentiating between the packet loss due to congested network and that due to

channel errors. As known, TCP was initially designed for wired networks, meaning that

the major cause of packet loss is the congested routers at the network, while in mobile

ad hoc networks; the cause is much more often transmission link errors. This inability of

TCP to recognize the main cause of losses in the network, leads to some aggressive

actions taken by TCP error recovery algorithms that may waste the limited power resources

of the mobile nodes (as will be explained in the following sections). While the

receive processes are the same for all of the TCP versions considered, their transmit

processes are different in the way the loss recovery phase is implemented. Thus, the

energy efficiency of error control strategies cannot be studied without taking into account

the associated mechanisms for loss recovery [11].

4.2 TCP Variants

4.2.1 Baseline TCP (Old Tahoe)

Traditionally, the TCP receiver only acknowledges the highest segment it has

successfully received in order by an accumulative acknowledgement, and if a segment

is lost, there is no way to indicate it to the sender. In the early versions of TCP the only

way to recover from a segment loss was to wait for UHWUDQVPLVVLRQ� WLPHRXW (RTO) to

expire. The length of the RTO is determined from the measured URXQG�WULS� WLPH (RTT)

and the variance of the recent RTT measurements [1]. The receiver cannot acknowledge

new data in case of segment loss and hence the sender is not allowed to send new

data. Therefore, before the retransmission timeout expires, there is usually an idle

period during which the sender does not transmit any data, possibly causing the

communication path to be under-utilized. Also, as mentioned earlier, prolonged

communication sessions lead to more power consumption.

 29

Figure 4.1 Accumulat ive Acknowledgement

used by t radit ional TCP

As can be seen, when a packet lost the receiver cannot acknowledge new data, then the sender

must wait for the retransmit timer to timeout before sending the lost packet, and then the

sender will retransmit all the following packets even if they were already sent before.

Traditional TCP consumes a lot of energy at high loss rates, since it will wait for RTO timer

to expire each time before retransmitting the lost packet. Also, the energy consumed increases

with an increase in RTO. Thus, reducing the RTO value would be a solution to minimize the

energy consumption at the sender.

4.2.2 TCP Tahoe

The TCP Tahoe implementation added a number of new algorithms and refinements to earlier

implementations. The new algorithms include 6ORZ�6WDUW� (see Annexe A), &RQJHVWLRQ�
$YRLGDQFH, and)DVW� 5HWUDQVPLW [7] [10]. The refinements include a modification to the

round-trip time estimator used to set retransmission timeout values [7] [1]. The goal of VORZ�
VWDUW and FRQJHVWLRQ�DYRLGDQFH is to keep the congestion window size around optimal size as

much as possible. 6ORZ�VWDUW increases the window size rapidly to reach maximum safety

transfer rate (half of the transfer rate that caused packet loss) as fast as possible and

FRQJHVWLRQ� DYRLGDQFH increases the window size slowly to avoid packet losses as long as

possible.

The transition from VORZ�VWDUW to FRQJHVWLRQ�DYRLGDQFH is done according to the “ VVWKUHVK´

variable traced by TCP: • If &:1' < VVWKUHVK, then do VORZ�VWDUW.
• If &:1' > VVWKUHVK, then do FRQJHVWLRQ�DYRLGDQFH.

Figure 4.2 CWND Variat ion of TCP Tahoe

 30

The above graph shows the &:1' variation of TCP Tahoe at both VORZ�VWDUW and FRQJHVWLRQ�
DYRLGDQFH phases. And also, it shows how the congestion window adapts itself according to

the network conditions. When there is a packet loss that means the &:1' had to be

minimized to overcome the congestion problem in the network.

Figure 4.3 Fast Retransmit Algorithm in TCP Tahoe

The sender recognizes that there is a packet loss upon the receiving of three
duplicate ACKs from the receiver side. Then, it t riggers the fast retransmit
algorithm to resend the lost packet without wait ing for the RTO to go off . This

act ion will insure the fast ret ransmission of lost packets, which results in
improving the throughput and conserving the consumed energy.

4.2.3 TCP Reno

The congestion control mechanism of TCP Reno, the most popular TCP implementation,

retained the enhancements incorporated into TCP Tahoe, but modified the)DVW�5HWUDQVPLW
operation to include)DVW� 5HFRYHU\� [12]. The 6ORZ�6WDUW and the &RQJHVWLRQ� $YRLGDQFH
algorithms are used by a TCP Reno sender to control the amount of data injected into the

network while the)DVW�5HWUDQVPLW and the)DVW�5HFRYHU\ are used to recover from packet

losses without the need for UHWUDQVPLVVLRQ�WLPHRXWV (RTOs) [2]. The main difference between

TCP Tahoe and TCP Reno resides in the congestion estimation part. In TCP Tahoe each

packet loss is considered as a serious congestion problem, resulting in setting the &:1' size

to minimum value after each packet loss. While in the Reno version, TCP can differentiate

between a two cases:

• If packet loss was found by 5HWUDQVPLW� 7LPHRXW, then the network severs from a

serious congestion problem. TCP here sets the window size to minimum value and

enters VORZ�VWDUW phase.

 31

• If packet loss was found by 'XSOLFDWH� $&.V, then the congestion is not severe

because of the following:

1. At least 3 packets could arrive at the receiver after packet loss.

2. At least 3 packets left the network, so there may be a chance to transmit a packet.

Then, &:1' size is set to half the current &:1' and TCP transits to FRQJHVWLRQ�
DYRLGDQFH phase.

The above strategy of data loss recovery in TCP Reno is shown to perform better than TCP

Tahoe, when single packet losses occur in one segment (random error); because it is not

obliged to wait for the RTO to retransmit the lost packet. However, it can suffer performance

problems when multiple packets are lost in one data segment (burst error); since the CWND

will be significantly reduced in this case and the return to its original size occurs only after a

considerable delay [2]. For example, with two packets lost, the CWND will be reduced twice,

while for more than two packets lost the TCP Reno will recognize the loss after RTO expires.

Figure 4.4 CWND variat ion of TCP Tahoe and TCP Reno

As can be noticed from the above draw, TCP Reno recovers more quickly than TCP Tahoe,

since it will not shrink the CWND to minimum each time it will encounter a packet loss as the

case in TCP Tahoe. It is important to note that this algorithm of TCP Reno will enhance the

network performance and in the same time will decrease the energy consumed at the nodes.

4.2.4 TCP New- Reno

The New-Reno TCP includes a small change to the Reno algorithm at the sender, that

eliminates Reno’ s wait for a retransmit timer when multiple packets are lost from a window

(burst error loss) [13] [14].

The change concerns the sender’ s behavior during)DVW� 5HFRYHU\ when a SDUWLDO ACK is

received that acknowledges some but not all of the packets that were outstanding at the start

 32

of the)DVW�5HFRYHU\ period. In TCP Reno, SDUWLDO ACKs take TCP out of)DVW�5HFRYHU\ by

deflating the usable window back to the size of the congestion window. In TCP New-Reno,

SDUWLDO�ACKs don’ t take TCP out of)DVW�5HFRYHU\. Instead, SDUWLDO�ACKs received during

)DVW� 5HFRYHU\� are treated as an indication that the packet immediately following the

acknowledged packet in the sequence space has been lost, and should be retransmitted. Thus,

when multiple packets are lost from a single window of data, New-Reno can recover without

a retransmission timeout, retransmitting one lost packet per round-trip time until all of the lost

packets from the window have been retransmitted. TCP New-Reno remains in)DVW�5HFRYHU\
until all of the data outstanding when)DVW�5HFRYHU\ was initiated has been acknowledged [2].

The TCP New-Reno version can cover from multiple losses, and is therefore more suited than

TCP Reno to the mobile wireless environment, where packet losses may occur in bursts. A

major drawback of TCP New-Reno is that the sender retransmits only one packet per RTT.

When several losses occur, the TCP New-Reno usually recovers only after a considerable

delay [22].�

4.2.5 TCP SACK

Traditional implementations of TCP use an acknowledgement number field that contains a

cumulative acknowledgement, indicating that the TCP receiver has received all of the data up

to the indicated byte. A selective acknowledgement option allows receivers to additionally

report non-sequential data they have received. The SACK option is used in an ACK packet to

indicate which packets were received precisely. When coupled with a selective retransmission

policy implemented in TCP senders, considerable savings can be achieved. Adding SACK to

TCP does not change the basic underlying congestion control algorithms. The TCP SACK

implementation preserves the properties of TCP Tahoe and TCP Reno of being robust in the

presence of out-of-order packets, and uses retransmit timeouts as the recovery method of last

resort. The main difference between the TCP SACK implementation and the TCP Reno

implementation is the behavior when multiple packets are dropped from one window of data

[2]. SACK option is a notification of which segments were received correctly. When a TCP

sender receives an ACK that contains a SACK option, it uses this information to decide which

packets should be retransmitted [22]. The sender maintains a list of segments deemed to be

missing (based on all the SACKs received) and sends new or retransmitted data when the

estimated number of packets in the path is less than the congestion window. When a

retransmitted packet is itself dropped, the SACK implementation detects the drop with a

 33

UHWUDQVPLVVLRQ�WLPHRXW, retransmitting the dropped packet and then VORZ�VWDUWLQJ. SACK exits

)DVW�5HFRYHU\ under the same conditions as New-Reno.

Fig 4.6 Example of the SACK option

The SACK option of TCP will acknowledge the packets that correct ly received and
the sender will deduce the lost packets from the received SACK coming f rom the
receiver side. In the previous Figure, as an example, the receiver acknowledges

that the packets f rom 2000 to 2500 and those from 3000 to 3500 were received
intact, and the sender then will recognize, upon the receiving of that ACK, that
the packets between those, which were acked, are lost.

4.2.6 TCP WestwoodNR

TCP WestwoodNR is a sender-side modification of the TCP congestion window algorithm

that improves upon the performance of TCP New-Reno in wired as well as wireless networks

(in fact, there are two variants of TCP-Westwood, one is based on TCP Reno, and the other is

based on TCP New-Reno which we are going to study in this work). The improvement is

most significant in wireless networks with lossy links, since TCP WestwoodNR relies on end-

to-end bandwidth estimation to discriminate the cause of packet loss (congestion or wireless

channel effect), which is a major problem in TCP New-Reno [23].

 [When BWE*RTTmin (pipe size) << CWND, it is more likely that packet losses

are due to congestion. This is because the connection is using a CWND value

much higher than its share of pipe size, thus congestion is likely. On the other

hand, when BWE*RTTmin > CWND, it indicates that packet losses are due to

link-error]

The key idea of TCP WestwoodNR is to exploit TCP acknowledgement packets to derive

rather sophisticated measurements as follows:

 34

1. The source performs an end-to end estimate of the bandwidth available along a TCP

connection by measuring and averaging the rate of returning ACKs.

2. After a congestion episode (i.e. the source receives three duplicate ACKs or a timeout)

the source uses the measured bandwidth to properly set the congestion window and

the VORZ�VWDUW threshold, starting a procedure that is called IDVWHU�UHFRYHU\.
By backing off to FZQG� and VVWKUHVK values that are based on the estimated available

bandwidth (rather than simply halving the current values as Reno does), TCP WestwoodNR

avoids overly conservative reductions of FZQG and VVWKUHVK; and thus it ensures a IDVWHU�
5HFRYHU\��resulting in achieving higher throughput.

4.2.7 TCP Vegas

Vegas extends Reno’ s retransmission mechanisms as follows. First, Vegas reads and records

the system clock each time a segment is sent. When an ACK arrives, Vegas reads the clock

again and does the RTT calculation using this time and the timestamp recorded for the

relevant segment. Vegas then uses this more accurate RTT estimate to decide to retransmit in

the following two situations: [see 39]

• When a duplicate ACK is received, Vegas checks to see if the difference between the

current time and the timestamp recorded for the relevant segment is greater than the

timeout value. If it is, then Vegas retransmits the segment without having to wait for Q

(3) duplicate ACKs. In many cases, losses are either so great or the window so small

that the sender will never receive three duplicate ACKs, and therefore, Reno would

have to rely on the timeout mentioned.

• When a non-duplicate ACK is received, if it is the first or second one after a

retransmission, Vegas again checks to see if the time interval since the segment was

sent is larger than the timeout value. If it is, then Vegas retransmits the segment. This

will catch any other segment that may have been lost previous to the retransmission

without having to wait for a duplicate ACK.

In other words, Vegas treats the receipt of certain ACKs as a trigger to check if a timeout

should happen. It still contains Reno’ s coarse-grained timeout code in case these mechanisms

fail to recognize a lost segment. Notice that the congestion window should only be reduced

due to losses that happened at the current sending rate, and not due to losses that happened at

an earlier, higher rate. In Reno, it is possible to decrease the congestion window more than

once for losses that occurred during one RTT interval. In contrast, Vegas only decreases the

 35

congestion window if the retransmitted segment was previously sent DIWHU� the last decrease.

Any losses that happened before the last window decrease do not imply that the network is

congested for the FXUUHQW�congestion window size, and therefore, do not imply that it should

be decreased again. This change is needed because Vegas detects losses much sooner than

Reno [39].

First, Vegas sets %DVH577�to the minimum of all measured round trip times; it is commonly

the RTT of the first segment sent by the connection, before the router queues increase due to

traffic generated by this connection. If we assume that we are not overflowing the connection,

then the expected throughput is given by:

([SHFWHG� �:LQGRZ6L]H���%DVH577�

where :LQGRZ6L]H� is the size of the current congestion window, which we assume for the

purpose of this discussion, to be equal to the number of bytes in transit.

Second, Vegas calculates the current $FWXDO� sending rate. This is done by recording the

sending time for a distinguished segment, recording how many bytes are transmitted between

the time that segment is sent and its acknowledgement is received, computing the RTT for the

distinguished segment when its acknowledgement arrives, and dividing the number of bytes

transmitted by the sample RTT. This calculation is done once per round-trip time.

Third, Vegas compares $FWXDO� to ([SHFWHG, and adjusts the window accordingly. Let 'LII �
([SHFWHG���$FWXDO. Note that 'LII� is positive or zero by definition, since $FWXDO�!�Expected

implies that we need to change %DVH577� to the latest sampled RTT. Also define two

thresholds, α <β, roughly corresponding to having too little and too much extra data in the

network, respectively. When 'LII��α, Vegas increases the congestion window linearly during

the next RTT, and when 'LII�!β, Vegas decreases the congestion window linearly during the

next RTT. Vegas leaves the congestion window unchanged when α < 'LII�<β.

Intuitively, the farther away the actual throughput gets from the expected throughput, the

more congestion there is in the network, which implies that the sending rate should be

reduced. The β threshold triggers this decrease. On the other hand, when the actual

throughput rate gets too close to the expected throughput, the connection is in danger of not

utilizing the available bandwidth. The α threshold triggers this increase. The overall goal is to

keep between α and β extra bytes in the network.

 36

Figure 4.7 Congest ion detect ion and avoidance in Vegas [39].

1. The small vert ical line—once per RTT—shows the t imes when Vegas makes
a congest ion control decision; i.e., computes Actual and adjusts the window

accordingly.

2. The gray line shows the Expected throughput. This is the throughput we
should get if all the bytes in transit are able to get through the connect ion

in one BaseRTT.

3. The solid line shows the Actual sending rate. We calculate it f rom the
number of bytes we sent in the last RTT.

4. The dashed lines are the thresholds used to control the size of the
congest ion window. The top line corresponds to the α threshold and the

bottom line corresponds to the β threshold.

4.3 Comparat ive Study of TCP Variants

4.3.1 Simulat ion Scenarios

Our simulations are done using the network simulator version 2 (NS-2) [40]. The simulations

consist of a network of 20 nodes confined in a (670 x 670) m² area. 14 TCP connections were

established (ftp traffic used with a packet size of 512 bytes). Simulation time is 400 seconds.

The initial battery capacity of each node is 10 joules. This initial energy is reduced

progressively by data transmission, reception, retransmission, and forwarding. We consider

the simple case where the transmission and reception of a packet consumes a fixed amount of

energy from the node’ s battery. When this initial energy reaches zero joules, the

corresponding node cannot take part anymore in the communication, as is regarded as dead.

Each node has a radio propagation range of 250 meters. At these simulations, we have

 37

studied the TCP using different loss model scenarios with several values of BER (5%, 10%,

and 15%) and a lost link (LL) scenario.

In this work, we are going to study two of the performance parameters of TCP variants: one

of them is the energy consumed in transmission, reception, forwarding and retransmission of

packets. The other one is the average connection time. Note that, it was proved in the

literature [6] that this time is proportional to the sum of the energy consumed at listening the

radio channel plus that consumed at the execution of the different algorithms used in each

TCP variant at the CPU unit.

130

150

170

190

210

230

250

TCP-N
ewre

no

TCP-R
eno

TCP-S
ack

1

TCP-T
ahoe

TCP-V
egas

TCP-W
est

woodNR

a
ve

ra
g

e
 c

o
n

n
e

ct
io

n
 t

im
e

 (
se

c)

5%

10%

15%

LL

Figure 4.8. Average connect ion t ime of TCP sessions

0

10

20

30

40

TCP-N
ewre

no

TCP-R
eno

TCP-S
ack

1

TCP-T
ahoe

TCP-V
egas

TCP-W
est

woodNR

e
n

e
rg

y
co

n
su

m
e

d
 p

e
r

b
it

 (
J

E
-0

6
)

5%

10%

15%

LL

Figure 4.9. Energy Consumed per Received Bit

4.3.2 Energy Consumption of TCP Tahoe

From Figure 4.9, we can conclude that our results confirm the results obtained in [11] in

which that TCP Tahoe performs better in the case of burst errors (lost link) than in the case of

random BER (as can be seen in the Figure). TCP Tahoe saves energy consumption per

received bit because it backs off in the presence of burst loss, which confirms the fact that, at

burst error case or when there is a lost link in the network, it is better to stop data

transmission until a new route is found. In [11] the authors leave the important issue of the

energy efficiency tradeoffs involved when backing off increases delays, and hence the

overall connection time. Figure 4.8 can explain the effect of “ backing off” algorithm of TCP

Tahoe on the average connection time and hence on the total energy consumption of TCP.

Although that backing off saves energy consumed per received bit in the burst error case, we

have found that it introduces an extra delay in the network. And as discussed before, the

longer the connection time, the greater the total energy consumed due to the idle energy

consumption at the node. At idle times, although that the node does not send data, it will

listen to the radio waves in order to receive the acknowledgement, also there is a time

 38

consumption at the CPU unit in which it executes the TCP algorithms used (IDVW�UHWUDQVPLW,
VORZ�VWDUW, and FRQJHVWLRQ� DYRLGDQFH algorithms). At high BER, TCP Tahoe consumes a

great amount of energy due to high number of unnecessary retransmissions and the fact that

after each error recovery TCP Tahoe will enter the VORZ�VWDUW phase, which means slowing

down its transmission rate.

4.3.3 Energy Consumption of TCP Reno

The simulation results in Figure 4.9 proved that the energy consumed by TCP Reno will be

less than that of the Tahoe version, in the case of random loss, due to the IDVW�UHFRYHU\ action

taken, which does not exist in the TCP Tahoe. However, in the case of bursty packet loss

(lost link), TCP Tahoe may have lower energy consumption per received bit, since it backs

off in front of the burst errors, which may increase the chance of successful retransmission

after that. For example, if the burst packet loss is due to a bad connection or a link failure,

backing off for a while, will help avoiding the unnecessary retransmissions. On the other

hand, Figure 4.8 shows that TCP Reno has a long average connection time compared with

the other TCP variants especially at high BER due to the fact that TCP Reno is unable to

recover from more than one lost packet at a time. When there is a high BER, TCP Reno

decreases its transmission rate by half each time there is a lost packet, then after two trials of

loss recovery, TCP Reno reaches almost the same transmission rate as in TCP Tahoe. After

three trials of recovery, TCP Reno has to wait to RTO expiration that leads to backing off

and entering VORZ�VWDUW phase (exactly as in TCP Tahoe). The above process leads to more

time consumption in the first two trials of recovery, while that TCP Tahoe is backing off and

goes through VORZ�VWDUW directly from the first packet loss. As TCP Reno has a high average

connection time compared with TCP Tahoe, it means that TCP Reno consumes more energy

than TCP Tahoe. Indeed, as mentioned before, the average connection time is directly

proportional to the energy consumed at the CPU in order to execute the TCP variant

algorithms plus that consumed at listening to the radio channel. Hence, we can conclude that

there is an extra energy consumed in order to execute the IDVW�UHFRYHU\ algorithm in the CPU.

This led us to conclude that TCP Reno will probably consume more total energy than TCP

Tahoe in almost most of the cases.

 39

4.3.4 Energy Consumption of TCP New- Reno

In this variant of TCP, there will be a noticeable savings in the energy consumption per

received bit in both random and bursty packet losses due to the SDUWLDO�$&.V used, since it

will not wait for RTO timer in order to retransmit the lost packet. For bursty loss errors, TCP

Tahoe performs better than TCP Reno (as explained earlier), and TCP New-Reno performs

slightly well than Tahoe [Figure 4.9], since TCP New-Reno is not obliged to wait before

retransmitting the lost data and in the mean time its congestion window will increase faster

than that of TCP Tahoe. Figure 4.8 shows that TCP-New-Reno has less average connection

time compared with both TCP Tahoe and TCP Reno, at burst error case and at high BER, due

to the IDVW�UHFRYHU\ algorithm which is not available in TCP Tahoe and partial ACKs that does

not exist within TCP Reno.

We can also conclude from Figures 4.9 and 4.8 that TCP New-Reno has always the best

performances compared to all other TCP variants in terms of energy consumption per

received bit.

4.3.5 Energy Consumption of TCP SACK

Figure 4.9 shows although that TCP SACK does not consume a lot of energy in ad hoc

networks; TCP New-Reno slightly outperforms it in term of energy consumed per received bit

at different BER values, and even at lost link case. In fact, when comparing the general

performances (goodput) of TCP SACK and TCP New-Reno over wireless channels, we can

note that TCP SACK outperforms TCP New-Reno in most of the cases. This is mainly due to

the 6HOHFWLYH� $FNQRZOHGJHPHQWV feature that allows TCP SACK to terminate the

retransmission of lost data more quickly than TCP New-Reno (which does not know which of

the unacked segments are missing at the receiver). However, in terms of energy consumption,

this gain is neutralized. We think that this is due to the overhead that is introduced by the

SACK option. Indeed, SACK packets1 can in certain cases reach the double of normal TCP

ACK packet size2. This will in turn lead to more energy consumption per sent SACK.

Figure 4.8 is showing two different results:

1 SACK packet size = IP Header + TCP ACK Header + SACK option = 20 bytes + 20 bytes + 40 bytes = 80
bytes. 40 bytes is the maximum size of a TCP Header option. SACK can use this entire size to transmit the
6HOHFWLYH�$FNQRZOHGJHPHQW. This size depends on the number of segments to be acknowledged.
2 Normal TCP ACK packet size = IP Header + TCP ACK Header = 20 bytes + 20 bytes = 40 bytes.

 40

• The first is that TCP SACK has a shorter average connection time in case of burst loss

(lost link) as it retransmits only the lost packets (as explained earlier). The following

packets, which may use the recovered route (by the routing protocol), are not

retransmitted. In the mean time, TCP New-Reno has to retransmit the entire segment even

the packets not loosed. Furthermore, TCP New-Reno can not retransmit more than one

lost packet per RTT, which means that at burst loss case (lost link), we must wait for a

time equal to the number of packets considered as lost multiplied by the RTT value.

Hence, the large the number of lost packets, the longer we must wait to recover. This is

not the case of TCP SACK that retransmits all the lost packets without waiting for RTT.

• The second result which can be viewed from Figure 4.8 is that at high BER TCP New-

Reno has a shorter average connection time than that of TCP SACK. This is due to the

fact that at high BER, we may have a retransmitted packet that is dropped again, the

SACK implementation detects the drop with a UHWUDQVPLVVLRQ�WLPHRXW, retransmitting the

dropped packet and then VORZ�VWDUWLQJ, which is not the case with TCP New-Reno.

Indeed, TCP New-Reno does not enter the VORZ�VWDUW phase, but it decreases the

transmission rate by half the current value.

However, note that the energy consumption (per time unit) due to the operation of the

algorithms of TCP SACK (CPU units) is high compared to TCP New-Reno. Then, even if,

TCP SACK has a slightly low average connection time in the burst error case (link lost), the

energy consumed by TCP SACK may be higher then the one consumed by TCP New-Reno.

4.3.6 Energy Consumption of TCP WestwoodNR

Figure 4.8 showed that TCP WestwoodNR has the same average connection time as that of

TCP New-Reno in the case of burst error (lost link). Indeed, at lost link case, a TCP session

will experience burst losses then both TCP variants will have to wait until the RTO expires

before retransmitting. As both of them wait for an RTO, this can gives the routing protocol

enough time to recover the route between source and destination. This will in turn lead to

approximately the same average connection time for both variants. Figure 4.8 proves that at

low BER (5%), TCP WestwoodNR will have shorter average connection time than TCP New-

Reno, because of its ability to adjust the transmission rate according to the bandwidth

estimated in the network instead of blindly halving it as with TCP New-Reno. Also, Figure

4.8 demonstrates that TCP New-Reno outperforms TCP WestwoodNR at high BER (10% and

15%) in terms of average connection time, because at high BER there is a loss at the received

 41

ACKs leading to misbehavior of the bandwidth estimation algorithm of TCP WestwoodNR (it

is also the case in Figure 4.9 with the energy consumed per received bit).

If we look at Figure 4.9, we can see the same situation as when looking to Figure 4.8. TCP

WestwoodNR and TCP New-Reno consume approximately the same energy in the cases of

link loss (for the same reasons as for the average connection time) and for low and medium

BER. For low and medium BER (5% and 10%), even if TCP sessions do not take the same

average connection time when using TCP New-Reno or TCP WestwoodNR, the proportion

between received bits (by the destination) and the total sent bits including lost packet (by the

source) remain almost the same. This is due to the operations of both TCP variants that can

introduce, depending on the situation (BER), more or less delay when retransmitting lost

packets. More precisely, we think that the size of the congestion window is not well

dimensioned by both TCP variants depending on the BER. Hence, sometimes TCP

WestwoodNR has the best transmission rate and some other times it is TCP New-Reno.

4.3.7 Energy Consumption of TCP Vegas

When dealing with low BER (5%), TCP Vegas will be the best of all TCP variants in terms of

energy consumed per received bit and average connection time [as can be seen from Figures

4.8 and 4.9]. This is due to the behavior of TCP Vegas that, on the first duplicate ACK

received checks for the RTT value and compares it with the RTO value leading to faster

recovery than the other TCP variants that have to stay until the reception of the third duplicate

ACK. At high BER (10% and 15%), TCP Vegas has always the worst average connection

time and energy consumed per received bit, because of its dependence on the RTT measured

values of the received ACKs. Hence, at high BER, we will have a high loss in received ACKs

that in turn will force TCP Vegas not to have a good behavior. In addition, it is shown that

TCP Vegas has low average connection time in case of burst error (lost link) due to its ability

to deduce a good estimation for the transmission rate compared to TCP New-Reno (that

simply halves the congestion window size) or TCP WestwoodNR (that waits for the third

duplicate ACK arrival before entering the retransmission process). This behavior also leads to

less energy consumption as can be verified from Figure 4.9.

4.3.8 Summary

To summarize simulation results obtained in this chapter, at high BER (15%) TCP New-Reno

outperforms the other TCP variants followed by TCP SACK. In low and medium BER (5%

 42

and 10%), TCP New-Reno has also a good energy consumption per received bit ratio. In

addition, TCP Vegas and TCP New Reno have the best (the least) energy consumption when

there is a lost link in the network.

When comparing the average connection time, we found that at medium and high BER (10%

and 15%) TCP New-Reno outperforms the other TCP variants followed by TCP

WestwoodNR. In addition, TCP Vegas and TCP SACK, followed by TCP New-Reno, have

the best (the least) average connection time when there is a lost link in the network. On the

other hand, when we have a low BER (5%), the best TCP variants, in term of average

connection time, are Vegas and WestwoodNR. This is due to their ability, at this BER level,

to adjust well the congestion window size.

Our results show that in almost all studied situations, TCP New-Reno is the one having the

best performances in terms of energy efficiency in a static ad hoc network.

4.4 Conclusion

It was proved that the congestion control algorithm in TCP variants has an important effect on

the energy consumption in an ad hoc network. Even that TCP was originally designed for

ordinary wired networks, it has been proved that it will fit well in conserving the energy in ad

hoc networks especially in front of burst error cases which is, in most of the time, a

consequence of a lost link in the ad hoc network. Also, we found that the average connection

time of a TCP session can give a good indication of the delay introduced in the network,

leading to energy consumption. From our comparative study in this chapter, we conclude that

TCP New-Reno is the best among all other TCP variants, because of its ability to handle both

random BER and broken link losses efficiently. However, in the above scenarios there is no

mobility introduced in the network and then no effect due to mobility handling by ad hoc

routing protocols. Now, as we studied the behaviour of TCP variants in static ad hoc networks

by varying the type and the importance of losses, we will study (in the next chapter) the effect

of other ad hoc network parameters (routing protocols and mobility factor) on TCP

performance parameters (energy consumption and average connection time).

 43

CHAPTER V – Energy Consumption of TCP Variants
in Mobile Ad Hoc Networks

5.1 Introduct ion

The energy consumption in ad hoc networks is affected by several factors; among the most

important ones, we can find the degree of mobility and the impact of the choice of the routing

protocol. In this chapter, we will study the effect of both of them on the energy consumed by

TCP variants.

5.2 Simulat ion Scenarios

Here, we have used the same scenarios used in the last chapter, with four different node

velocities (5, 15, and 30 m/s) combined with four different routing protocols (DSDV, AODV,

DSR, and OLSR). Our aim is to study the effect of each of them on the energy consumption

of each TCP variant. The purpose of our study is to find the most suitable TCP variant in

different network environments.

5.3 Rout ing Protocol Effects on TCP Energy Consumption

To study the effect of the routing protocol on the TCP variants performances, we compare

their behavior according to each node velocity value (5, 15, and 30 m/s).

5

7

9

11

13

TCP-N
ew

re
no

TCP-R
eno

TCP-S
ac

k1

TCP-T
ahoe

TCP-V
eg

as

TCP-W
es

tw
oodNR

en
er

gy
 c

o
ns

um
e

d
pe

r
bi

t
(J

 E
-0

6)

AODV
DSDV
DSR
OLSR

Figure 5.1.a Energy consumed per received bit

at 5 m/ s speed

20

40

60

80

100

120

TCP-N
ewre

no

TCP-R
en

o

TCP-S
ack

1

TCP-T
ahoe

TCP-V
egas

TCP-W
est

woodNR

av
er

ag
e

co
nn

ec
ti

on
 t

im
e

(s
ec

)

AODV

DSDV

DSR

OLSR

Figure 5.1.b Average connect ion t ime of TCP connect ions

at 5 m/ s speed

 44

7

9

11

13

TCP-N
ew

re
no

TCP-R
eno

TCP-S
ac

k1

TCP-T
ahoe

TCP-V
eg

as

TCP-W
es

tw
oodNR

en
er

gy
 c

on
su

m
ed

 p
er

 b
it

 (
J

E-
06

)
AODV
DSDV
DSR
OLSR

Figure 5.2.a Energy consumed per received bit

at 15 m/ s speed

40

60

80

100

120

TCP-N
ewre

no

TCP-R
eno

TCP-S
ack

1

TCP-T
ahoe

TCP-V
egas

TCP-W
est

woodNR

av
er

ag
e

co
n

ne
ct

io
n

 t
im

e
(s

ec
)

AODV

DSDV

DSR

OLSR

Figure 5.2.b Average connect ion t ime of TCP connect ions

at 15 m/ s speed

7

9

11

13

15

TCP-N
ew

re
no

TCP-R
eno

TCP-S
ac

k1

TCP-T
ahoe

TCP-V
eg

as

TCP-W
es

tw
oodNR

en
er

gy
 c

on
su

m
e

d
pe

r
bi

t
(J

 E
-0

6)

AODV
DSDV
DSR
OLSR

Figure 5.3.a Energy consumed per received bit

at 30 m/ s speed

20

40

60

80

100

120

140

160

180

TCP-N
ewre

no

TCP-R
en

o

TCP-S
ack

1

TCP-T
ahoe

TCP-V
egas

TCP-W
est

woodNR

av
er

a
g

e
co

n
n

ec
ti

on
 t

im
e

(s
ec

)

AODV

DSDV

DSR

OLSR

Figure 5.3.b Average connect ion t ime of TCP connect ions

at 30 m/ s speed

TCP traffic uses two routes: (i) one from the source to the destination and (ii) another in the

opposite direction. This means more traffic control in the network when using reactive

protocols if the links are asymmetric in the network. In contrast, these routes are provided by

default in the topology routing tables in proactive protocols. In addition, when there is a lost

link in the network, reactive protocols are obliged to search for new valid route, while in

proactive protocols, there is no need to search again as they have redundant routes in their

routing protocol tables. That is why proactive protocols have less energy consumed per

received bit compared with reactive ones, especially at high mobility rates [Figures5.1.a,

5.2.a, 5.3.a]. We also note that the more the number of nodes in the network, the larger the

topology table updates, meaning that the overhead due to topology updates caused by

proactive protocols in this case will consume a lot of network resources (time and energy).

In the following, we will study in more details the effect of ad hoc routing protocols on TCP

variants in terms of energy consumed per received bit and the average connection time.

 45

5.3.1 Effects of AODV on Energy Consumption of TCP Variants

Figure 5.1.a shows that AODV has high energy consumed per received bit because of its

route discovery process overhead. TCP Tahoe consumes more energy per each received bit

because it enters the slow-start phase after each time there is a lost link. Let us recall that each

time there is a lost link in the network, AODV try to find a new valid route to handle the

interrupted communication (i.e., a TCP session in our case). But, as TCP Tahoe will decrease

its transmission rate significantly (slow-starting), and as there is a lot of lost links at the

network due to node mobility, TCP Tahoe is obliged to decrease its transmission rate many

times leading to less data to be sent [Figure 5.1.a]. Hence, the ratio between the overhead

induced by AODV control packet and the amount of data received will be the highest leading

to an important energy consumption per received bit for TCP Tahoe. This is not the case with

TCP Reno and TCP New-Reno. Indeed, these two variants ‘only’ half their transmission rate

instead of entering the slow-start phase. While TCP WestwoodNR has the best energy

consumption due to its way to adjust the transmission rate according to the bandwidth

estimated in the network. Figure (5.1.b) shows that, AODV has the shortest average

connection time compared with the other routing protocols, because at low mobility speed

networks, the route discovery process does not happen so frequently. At medium mobility

speed (15m /s), all the TCP variants have comparable values of energy consumption per

received bit except that of TCP Vegas, which has a higher value [Figure 5.2.a]. This is

because TCP Vegas relies on the RTT estimated value to decide its transmission rate. The

change in RTT value may lead to decreasing the transmission rate, hence consuming more

energy. Figure (5.3.a) shows that at high mobility speed (30m/s) TCP Reno and TCP SACK

have the best performance in terms of energy consumed per received bit.

5.3.2 Effects of DSR on Energy Consumpt ion of TCP Variants

Even that DSR is a reactive routing protocol and does not send periodically routing

advertisement, but the simulations showed that, it consumes more energy than the other

protocols [Figure 5.3.a] because of its routing overhead. DSR packets carry full path

information, which means sending a lot of routing information within the sent packet, leading

to less user data sent per TCP session despite that it decreases the overhead of intermediate

nodes (which route the packet depending on this information). As a result, DSR is not the best

choice if we have many data to send.

 46

On the other hand, DSR allows the nodes to keep multiple routes to the same destination in

their caches, meaning that when a broken route is found in the network the source node can

check its cache for another valid one. If the node can find another route, the route discovery

process is not needed, resulting in faster route recovery. This may explain that in the cases of

TCP Reno and Tahoe [see Figure 5.1.a], TCP Vegas [see Figure 5.2.a] and TCP

WestwoodNR [see Figure 5.3.a] DSR consumes less energy than AODV, which is not the

case with other TCP variants here.

In addition, we can see that DSR consumes more time than AODV [Figures 5.2.b, 5.1.b],

because of the processing time of packets (due to the heavy routing information overhead).

On the other hand, at high mobility rates (30 m/s), DSR may have less average connection

time than AODV due to its cache which reduces the time consumed at route discovery

process [Figure 5.3.b]. Actually, the long average connection times of TCP New-Reno and

TCP Tahoe (see Figure 5.1.b) are due to the behavior of both of them. TCP Tahoe backs off

for a long time, and TCP New-Reno can not retransmit more than one lost packet per RTT,

which means that the larger the number of lost packets, the longer the time consumed to

recover, results in longer connection time. Figures (5.1.a), (5.2.a) and (5.3.a) show that TCP

Reno, TCP Tahoe, and TCP WestwoodNR are the best among the other TCP variants when

using DSR routing protocol at different mobility speeds. This is because TCP Tahoe backs off

when there is a loss in the network, which will conserve the consumed energy. In addition, at

low mobility speed (5m/s), TCP Reno is a good choice as there is no high loss in the network

(and the DSR buffer may help in this case, with buffering the packets until finding a new

route will save the retransmission process at TCP Reno). While in high mobility speed

(30m/s), TCP Reno will back off exactly as in TCP Tahoe. For TCP WestwoodNR, the

bandwidth estimation algorithm saves the energy consumed by adjusting its transmission rate

according to the available bandwidth in the network.

5.3.3 Effects of DSDV on Energy Consumption of TCP Variants

We can see from Figures (5.1.a), (5.2.a) and (5.3.a) that DSDV routing protocol consumes

less energy per received bit than the other routing protocols because it does not have to wait

for a route discovery process to find a new route (in contrast to AODV and DSR).

Figure (5.1.b) shows that at low mobility (5m/s), TCP Tahoe and TCP WestwoodNR have

long average connection time because of backing off algorithm in TCP Tahoe and bandwidth

estimation algorithm in TCP WestwoodNR that introduce some delay in the network. While

 47

at high mobility speeds (15m/s, and 30m/s), TCP Vegas has the longest average connection

time because of the continuous change in propagation delay which causes TCP Vegas to

modify its transmission rate frequently, results in long connection time [Figures (5.2.b) and

(5.3.b)]. We find also that all TCP variants average connection time increases with the

mobility speed due to the large number of topology changes. DSDV does not have a buffer.

Hence, when there is a lost link in the path, DSDV will drop the packet forcing TCP variants

to initiate the congestion control algorithm and resulting in large number of retransmissions.

We can see from figures (5.1.a), (5.2.a), and (5.3.a) that all TCP variants have comparable

energy consumption per received bit at different mobility speeds. That is because DSDV

routing protocol drops the packets that could not be routed immediately (lake of buffering

feature) which will force almost all the TCP variants to back off in front of packet losses.

5.3.4 Effects of OLSR on Energy Consumpt ion of TCP Variants

The control traffic of AODV and DSR varies depending on the topological changes in the

network (caused by mobility and broken links) while it is constant for OLSR.

Where DSDV routing protocol uses merely the number of hops to make routing decisions (as

a distance victor routing protocol), OLSR performs more complex metric calculations (as a

link state protocol) to construct its routing table. As a result, we find that OLSR consumes

more energy per received bit than DSDV. In addition, OLSR diffuse its entire routing

information table periodically, on the contrary of DSDV, which sends only the routes vectors.

As in DSDV, the most TCP variants have almost the same performance in terms of energy

consumed per received bit because that OLSR does not buffer the packets that it cannot route

for the moment. Hence, forcing TCP variants to back off and then initiate their different

retransmission algorithms. All the figures show that TCP Vegas has the worst performance in

terms of energy consumed per received bit and average connection time. This is due to its

reaction when there is a change at the propagation delay in the network caused by the

mobility. TCP Vegas may decrease its transmission rate depending on the measured

propagation delay in the network, which leads to more energy consumption. While the other

TCP variants will have, less energy consumed per received bit than TCP Vegas because they

do not rely on the propagation delay of the network to adjust their transmission rate.

 48

5.3.5 Summary

The simulation results prove that, reactive protocols (AODV and DSR) consume more energy

per received bit than the proactive ones because of their routing overhead (route discovery,

route maintenance). In addition, TCP WestwoodNR is the best choice with AODV at low

mobility speed, while TCP Reno and TCP SACK have the best performance in terms of

energy consumed per received bit at high mobility speed when using AODV as a routing

protocol in the network. With DSR, TCP Reno, TCP Tahoe and TCP WestwoodNR are the

best choice among the other TCP variants at different mobility speeds. On the other hand, we

find that all TCP variants have almost about the same energy consumed per each received bit

when using DSDV. In OLSR, TCP Vegas has the worst energy consumption per received bit

due to its dependence on the propagation delay measurement of the network.

5.4 Mobility Effects on TCP Energy Consumpt ion

In this section, we are interested to find the effect of different velocities on each TCP variant.

5

7

9

11

13

15

5 15 30

speed (m/ s)

en
er

gy
 c

o
n

su
m

ed
 p

er
 b

it
 (

J
E

-0
6

)

AODV

DSDV

DSR

OLSR

(a)

TCP- Ta h o e

6

8

1 0

1 2

5 1 5 3 0

sp eed (m / s)

en
er

g
y

co
n

su
m

e
d

pe
r

bi
t

(E
-0

6
 J

)

AO D V

D SD V

D SR

O LSR

(b)

TCP-Reno

6

8

10

12

5 15 30

speed (m / s)

en
er

gy
 c

on
su

m
ed

 p
er

 b
it

 (
E

-0
6

 J
)

AODV

DSDV

DSR

OLSR

(c)

TCP-Vegas

7

9

11

13

5 15 30
speed (m/s)

en
er

g
y

co
n

su
m

ed
 p

er
 b

it
 (

E
-0

6
J)

AODV

DSDV

DSR

OLSR

(d)

 49

TCP-Sack1

6

8

10

12

14

5 15 30
speed (m/s)

en
er

g
y

co
n

su
m

ed
 p

er
 b

it
 (

E
-0

6
 J

)

AODV

DSDV

DSR

OLSR

(e)

TCP- W est w ood NR

7

9

11

13

5 1 5 3 0

sp eed (m / s)

e
n

e
rg

y
co

n
su

m
e

d
 p

er
 b

it
 (

E
-0

6
 J

)

AOD V

D SDV

D SR

OLSR

(f)

Figure 5.4 The energy consumed per received bit in: (a) TCP New- Reno (b) TCP Tahoe
(c) TCP Reno (d) TCP Vegas
(e) TCP SACK (f) TCP WestwoodNR

5.4.1 Mobility Effects on Energy Consumption

5.4.1.1 TCP Tahoe Energy Consumption

The above Figure 5.4 (b) shows that, DSDV is the best choice to implement in ad hoc

networks with TCP Tahoe as it has the lowest energy consumption per received bit compared

with the other routing protocols. We can also see that OLSR outperforms both AODV and

DSR because of its constant periodic updates. The reason that DSDV outperforms OLSR is

that DSDV can send an incremental update when there is a topology change in the network

without the need of diffusing its entire routing table. At high mobility speed (30m/s) reactive

protocols (AODV and DSR) have the same energy consumed per received bit due to the high

number of topology changes which leads to many route discovery processes in the network.

5.4.1.2 TCP New- Reno Energy Consumption

Figure 5.4 (a) shows that, DSDV routing protocol is performing well with TCP New-Reno at

different mobility speeds due to its incremental updates. On the other hand, at low mobility

rate, AODV, DSR and OLSR have the same energy consumed per received bit because at low

mobility speed the OLSR routing updates are comparable with the route discovery process in

reactive protocols as there are no many topology changes in the network. We see some

difference between the three protocols as the mobility rate increases, and OLSR is the

favourable one among them with that increase of speed. At high mobility speed (30m/s) the

overhead of route discovery process of reactive protocols augments.

5.4.1.3 TCP Reno Energy Consumption

 50

Figure 5.4 (c), shown above, proves that DSDV is the best choice as an ad hoc routing

protocol when using TCP Reno. We can see also from the same Figure that at low mobility

rates, there is a little nuance between the other three protocols. However, at higher mobility

rates, DSR starts to consume more energy than the others because that DSR packet carries full

path information [as explained in section 5.3.2].

5.4.1.4 TCP SACK Energy Consumption

Figure 5.4 (e) shows that both AODV and OLSR routing protocols have exactly the same

performance especially at high mobility speeds (15m/s and 30m/s) with TCP SACK. At high

network topology changes the overhead of route discovery processes in AODV is high, and in

OLSR, when there is no valid route in the routing table, OLSR will drop the packets (OLSR

does not have a buffer) which leads to high number of packet loss and then high

retransmissions, which means consuming more energy in retransmitting the lost packets. In

other words, the energy consumed at route discovery process by AODV at high mobility

network will be equal to the energy consumed at retransmitting the lost packets when using

OLSR at TCP SACK case. While DSDV still has the best performance and DSR consumes

more energy per each received bit due to its routing overhead (adding the entire routing path

to each sent packet).

5.4.1.5 TCP Vegas Energy Consumption

As can be seen from Figure 5.4 (d), when implementing TCP Vegas in the network, DSDV is

having the best performance in terms of energy consumed per received bit. The three other

protocols do not have a big difference at low mobility rate, while OLSR is outperforming

AODV and DSR at high mobility rate networks due to its constant routing updates.

5.4.1.6 TCP WestwoodNR Energy Consumption

Figure 5.4 (f) shows that DSDV is a favourable routing protocol when implementing TCP

WestwoodNR in the ad hoc network. And at high mobility speed (30m/s), AODV has the

highest energy consumed per received bit. DSR has less energy consumption than AODV at

high mobility speeds due to its cached routes.

5.4.1.7 Summary

From the above observations, we can conclude that in terms of the energy consumed per

received bit, proactive routing protocols outperform the reactive ones in most cases, as there

 51

is no need for initiating the route discovery process in each time there is a lost link in the

network. DSDV outperforms OLSR due to its incremental updates. In addition, it was shown

that, reactive protocols (AODV and DSR) energy consumption per each received bit increases

as the mobility speed increases due to the overhead of the route discovery process. In some

cases, such as TCP WestwoodNR, DSR has less energy consumption than AODV due to the

routes in its cache.

5.4.2 Mobility Effects on Average Connect ion Time

TCP-NewReno

30

50

70

90

110

130

150

5 15 30

speed (m / s)

a
v

r.
 c

o
n

n
x

 t
im

e
 (

se
c)

AODV
DSDV
DSR
OLSR

(a)

TCP-Tahoe

10

30

50

70

90

110

130

5 15 30

speed (m / s)

a
v

r.
 c

o
n

n
x

 t
im

e
 (

se
c)

AODV
DSDV
DSR
OLSR

(b)

TCP-Reno

10

30

50

70

90

110

130

5 15 30

speed (m / s)

a
v

r.
 c

on
n

x
 t

im
e

 (
se

c)

AODV
DSDV
DSR
OLSR

(c)

TCP-Vegas

10

30

50

70

90

110

130

150

170

190

5 15 30

speed (m / s)

a
v

r.
 c

o
n

n
x

 t
im

e
 (

se
c)

AODV
DSDV
DSR
OLSR

(d)

 52

TCP-Sack1

10

30

50

70

90

110

130

150

5 15 30

speed (m/ s)

a
v

r.
 c

on
n

x
 t

im
e

 (
se

c)

AODV
DSDV
DSR
OLSR

(e)

TCP-Westwood NR

10

30

50

70

90

110

130

5 15 30

speed (m/s)

av
r.

 c
on

n
x

ti
m

e
(s

ec
)

AODV

DSDV

DSR

OLSR

(f)

Figure 5.5 The average connect ion t ime of: (a) TCP New- Reno (b) TCP Tahoe
(c) TCP Reno (d) TCP Vegas
(e) TCP SACK (f) TCP WestwoodNR

5.4.2.1 TCP New- Reno Average Connect ion Time

From Figure 5.5 (a), we can conclude that with TCP New-Reno, the average connection time

is almost the same when AODV, DSDV or OLSR are used at low mobility speed due to

insignificant network topology changes. DSR consumes more time due to its heavy routing

information overhead when compared with AODV. On the other hand, at high mobility

speeds, OLSR will have the least average connection time because it searches the shortest

route in the network in terms of link delay; leading to less consumed time for sending and

receiving data. DSDV has high average connection time because it selects the shortest route

in terms of number of hops, which is not necessarily the optimum (the chosen links may have

high delay or be congested).

5.4.2.2 TCP Tahoe Average Connect ion Time

We can see from Figure 5.5 (b) that AODV is preferable with TCP Tahoe at low mobility

speed (5m/s) due to its short average connection time because at low mobility speed there are

no many topology changes in the network, hence the route discovery process is not frequently

initiated which does not introduce high latency in the network. OLSR is the best when we

have a high mobility speed (30m/s) for the same raison explained before. Also, we notice that

AODV average connection time increases with the mobility speed because of the high

number of route discovery process initiated in the network (high mobility rate means a lot of

lost links in the network topology). On the other hand, we can see that, DSR average

connection time decreases with the increase of mobility speed due to its cached routes.

 53

5.4.2.3 TCP Reno Average Connection Time

Figure 5.5 (c) shows that for TCP Reno, both AODV and DSR (reactive protocols) will have

the shortest average connection time at low mobility speed, while that DSR will be the best

choice at high mobility speed because DSR may have many valid routes in its cache that will

conserve the time used in route discovery process.

5.4.2.4 TCP Vegas Average Connect ion Time

We can see from Figure 5.5 (d) that reactive protocols will have the shorter average

connection time than the proactive ones at low mobility speed with TCP Vegas. At high

mobility speed, AODV has the best average connection time (the shortest) because AODV

has a buffer to keep the unsent packets until finding a new valid route and as TCP Vegas

measures the propagation delay in the network when it receives the acknowledgement. Hence,

as long as the delay introduced by the route discovery is less than RTO, TCP Vegas does not

have to resend the packet, which means conserving the time of retransmitting packets.

5.4.2.5 TCP SACK Average Connect ion Time

Figure 5.5 (e) shows that, when using TCP SACK in an ad hoc network, AODV and DSR will

have the same performance in terms of the average connection time at low mobility speed,

while, DSR will consume less than AODV at high mobility speed due to the use of a cache in

DSR.

5.4.2.6 TCP WestwoodNR Average Connect ion Time

Figure 5.5 (f) shows that, in ad hoc network with TCP-Westwood, AODV has the shorter

average connection time, at low mobility speed, compared with the other routing protocols

due to its low route discovery overhead.

5.4.2.7 Summary

To summarize, we can say that AODV has a good performance when we have a low mobility

speed in the network. In addition, we find that DSR performs well at high mobility speeds.

For OLSR, we think that it is the routing protocol, which has the most accepted performance

compared to the other ones.

5.5 Conclusion

 54

In this chapter, our simulations showed that, when comparing the energy consumption per

received bit of TCP variants, DSDV is the best choice at all mobility speeds. In addition, for

the average connection time, each TCP variant is having a different behaviour with the

different ad hoc routing protocols. On the other hand, we find that OLSR performs well with

the most TCP variants at different mobility speeds.

 55

CHAPTER VI - Conclusion and Perspectives

TCP was mainly designed for wired networks, where the main cause of lost packets is the

network congestion. In ad hoc networks, there are multiple reasons for losing packets. Among

them the (i) lost links due to node’ s mobility and (ii) BER of wireless links that can be more

or less high depending on the situation. Hence, it has been found that TCP congestion control

may have some aggressive actions dealing with packet loss in ad hoc networks. In addition to

that, ad hoc networks have limited resources in terms of energy, hence we found important to

study the characteristics of TCP energy consumption in such environment. Our work

consisted of studying the TCP variants in terms of energy consumption in different possible

situations (BER, routing protocols, and mobility).

Simulation results showed that TCP New-Reno is the best choice, in terms of energy

efficiency (energy consumption per received bit, average connection time), for a static ad hoc

network. This is because partial ACKs improve its reaction in front of lost links and more or

less high BER. We have also found that proactive routing protocols, especially OLSR, lead

TCP variants to have better behavior in terms of energy efficiency than reactive ones. Indeed,

when comparing the average connection times of different scenarios, we found that, at low

mobility speed, reactive protocols had shorter average connection time than proactive

protocols, while at high mobility speed, the time-overhead of reactive protocols (used for

route discovery and route maintenance) might increase the average connection time

significantly.

Let us remind that, it have been found that the average connection time of TCP session is a

helpful way to estimate the energy consumed by TCP operations (idle-energy/channel-

listening and processing at CPU unit). For future works, we propose to find a methodology in

order to translate the average connection time into energy units (joules) leading to a more

accurate study. In addition, it will be more useful to introduce more accurate error models to

better understand the performances (energy and average connection time) of TCP variants.

We propose also, to study TCP-variants performances in the presence of efficient routing

protocols3 to find out if they can reduce significantly the amount of energy consumed by TCP

in ad hoc networks or not.

3 Efficient routing protocols aim to conserve the energy of the node’ s battery.

 56

Annexe A

A.1 SLOW- START Algorithm

Figure A.1. Slow–Start Algorithm [7]

The horizontal direction is time. The continuous time line has been chopped into one round-

trip-time pieces stacked vertically with increasing time going down the page. The grey,

numbered boxes are packets. The white numbered boxes are the corresponding ACKs. As

each ACK arrives, two packets are generated: one for the ACK (the ACK says a packet has

left the system so a new packet is added to take its place) and one because an ACK opens the

congestion window by one packet [7].

The VORZ�VWDUW works as follows, at the sender [7]:

• Add a FRQJHVWLRQ�ZLQGRZ, &:1', to the per-connection state.

• When starting or restarting after a loss, set &:1' to one packet.

• On each ACK for new data, increase &:1' by one packet.

• When sending, send the minimum of the receiver’ s advertised window and &:1'.

 57

References

[1] G. R. Wright and W. R. Stevens, TCP/IP Illustrated, Volume I (The Protocols), $GGLVRQ�
:HVOH\��������

[2] K. Fall and S. Floyd., «Simulation-based comparison of Tahoe, Reno, and sack TCP»,

LQ�$&0�FRPSXWHU�FRPPXQLFDWLRQV�UHYLHZ��-XO\������.

[3] M. Zorzi and R.R. Rao., «Is tcp energy efficient?», LQ�3URFHHGLQJV�,(((�0R0XF��
1RYHPEHU�������

[4] Ola Westin, «Performance issues in ad hoc networks», ��WK�1RYHPEHU�������
[5] J. Liu, S. Singh, «ATCP: TCP for Mobile Ad Hoc Networks», ,(((�MRXUQDO�RQ�VHOHFWHG�

DUHDV�LQ�FRPPXQLFDWLRQV��-XO\�������
[6] Kostas Pentikousis, «TCP in wired-cum-wireless environments», � z { �TXDUWHU�LVVXH�RI�

,(((�&RPPXQLFDWLRQV�6XUYH\V�DQG�7XWRULDOV���������
[7] V. Jacobson., «Congestion avoidance and control», 6,*&200�V\PSRVLXP�RQ�

FRPPXQLFDWLRQV�DUFKLWHFWXUHV�DQG�SURWRFROV��SDJHV��������������. An updated version

is available via ftp://ftp.ee.lbl.gov/papers/congavoid.ps.z.

[8] B. Wang, and S. Singh, «Computational Energy Cost of TCP», $&0�6,*0(75,&6¶���
&RQIHUHQFH���

[9] J. C. Hsiao-Keng, «Zero-Copy TCP in salaries», LQ�86(1,;�$QQXDO�7HFKQLFDO�&RQIHUHQFH��
������SS���������� [Online]. Available: citeseer.nj.nec.com/chu96zerocopy.html

[10] M. Allman, V. Paxon, W. Stevens, «RFC 2581: TCP Congestion Control»,

http://www.ietf.org/rfc/rfc2581.txt, $SULO�����.

[11] M. Zorzi and R. Rao., «Energy Efficiency of TCP in a local wireless environment»,

0RELOH�1HWZRUNV�DQG�$SSOLFDWLRQV��9ROXPH����,VVXH����-XO\�������
[12] V. Jacobson., «Modified TCP Congestion avoidance Algorithm», 7HFKQLFDO�UHSRUW�����

$SU������. Email to the end2end-interest mailing list, URL

ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

[13] J. Hoe., «Start-up Dynamics of TCP’ s Congestion Control and Avoidance Scheme »,

-XQH�������0DVWHU¶V�WKHVLV��0,7.

 58

[14] D.D. Clark and J. Hoe., «Start-up Dynamics of TCP’ s Congestion Control and Avoidance

Scheme », 7HFKQLFDO�UHSRUW��-XQH�������3UHVHQWDWLRQ�WR�WKH�,QWHUQHW�HQG�HQG�5HVHDUFK�
*URXS��FLWHG�IRU�DFNQRZOHGJHPHQW�SXUSRVHV�RQO\��

[15] V. Tsaoussidis, A. Lahanas and C. Zhang, «The Wave and Probe Communication

mechanisms», &RPSXWHU�6FLHQFH.
[16] V. Ramarathinam, M. A. Labrador, «Performance Analysis of TCP over Static Ad Hoc

Wireless Networks», ,Q� 3URFHHGLQJV� RI� WKH� ,6&$� ��WK� ,QWHUQDWLRQDO� &RQIHUHQFH� RQ�
3DUDOOHO�DQG�'LVWULEXWHG�&RPSXWLQJ�6\VWHPV��3'&6����3DJHV����������6HSWHPEHU������

[17] A. Chockalingam, M. Zorzi and R.R. Rao, «Performance of TCP on wireless fading

links with memory», LQ�SURF��,(((�JOREFRP¶����'HFHPEHU�������33�����������
[18] A. Chockalingam, M. Zorzi and R.R. Rao, «Performance analysis of TCP on channels

with memory», ,(((�MRXUQDO�RQ�6HOHFWHG�$UHDV�LQ�&RPPXQLFDWLRQV��-XO\�������
[19] M. Zorzi and R.R. Rao, «Effect of correlated errors on TCP», LQ� SURF�� ����� &,66�

�0DUFK�������33�����������
 [20] S. Agrawal and S. Singh, «An Experimental Study of TCP’ s Energy Consumption over

a Wireless Link», � z { �(XURSHDQ�3HUVRQDO�0RELOH�&RPPXQLFDWLRQV�&RQIHUHQFH��)HE����
����������9LHQQD��$XVWULD��

[21] H. Singh, S. Saxena, and S. Singh, «Energy Consumption of TCP in Ad Hoc

Networks», -��:LUHOHVV�1HWZRUNV��9RO���������6HS������.

 [22] Michel M., Nelson L.S., and José F., «On the Performance of TCP Loss Recovery

Mechanisms»,

[23] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, «TCP Westwood:

Bandwidth Estimation for enhanced transport over wireless links», SURF�� RI� WKH� � z { �
DQQXDO�LQWHUQDWLRQDO�FRQIHUHQFH�RQ�PRELOH�FRPSXWLQJ�DQG�QHWZRUNLQJ��-XO\��������

 [24] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J.–C. Chen, «A survey of energy efficient

network Protocols for wireless Networks», $&0�%DOW]HU�-RXUQDO�RQ�:LUHOHVV�1HWZRUNV,
YRO�����1R�����������SS�����������

[25] K. Woo, C. Yu, D. Lee, H. Y. Youn, and Ben Lee, «Non-Blocking, Localized Routing

Algorithm for Balanced Energy Consumption in Mobile Ad Hoc Networks»,

0$6&276
��, Cincinnati, Ohio, Aug. 2001, pp. 117-124.

 59

[26] M. Maleki, K. Dantu, and M. Pedram, «Power-aware Source Routing in mobile ad hoc

networks», 3URFHHGLQJV�RI�,6/3('�¶��, Monterey, CA, Aug. 2002, pp. 72-75.

[27] M. Maleki, K. Dantu, and M. Pedram, «Lifetime Prediction Routing in Mobile Ad Hoc

Networks», ,(((�:LUHOHVV�&RPPXQLFDWLRQ�DQG�1HWZRUNLQJ�&RQI., Mars, 2003.

[28] S. Senouci, and G. Pujolle, «Energy efficient consumption in wireless ad hoc networks»,

DFFHSWp� j� ,(((� ,&&¶����� �,QWHUQDWLRQDO� &RQIHUHQFH� RQ� &RPPXQLFDWLRQV��� 3DULV�� -XLQ�
����.

[29] IETF MANET WG (Mobile Ad hoc NETwork), www.ietf.ora/html.charters/manet-

charter.html

[30] Elizabeth M. Royer, Chai-Keong Toh, «A Review of Current Routing Protocols for Ad

Hoc Mobile Wireless Networks», IEEE Personal Communications, April 1999.

[31] C. E. Perkins and P. Bhagwat, «Highly Dynamic Destination-Sequenced Distance-Vector

Routing (DSDV) for Mobile Computers», Comp. Comm. Rev., Oct. 1994, pp. 234-44.

[32] L. R. Ford Jr. and D. R. Fulkerson, «Flows in Networks», Princeton Univ. Press, 1962.

[33] C. E. Perkins and E. M. Royer, «Ad-hoc On-Demand Distance Vector Routing», Proc. 2nd

IEEE Wksp. Mobile Comp. Sys. And Apps., Feb. 1999, pp. 90-100.

[34] D. B. Johnson and D. A. Maltz, «Dynamic Source Routing in Ad-Hoc Wireless

Networks», Mobile Computing, T. Imielinski and H. Korth, Eds., Kluer, 1996, pp.153-81.

[35] J. Broch, D. B. Johnson, and D. A. Maltz, «The Dynamic Source Routing Protocol for

Mobile Ad Hoc Networks», IETF Internet draft, draft-ietf-manet-dsr-01.txt, Dec. 1998

(work in progress).

[36] A. Aaron and J. Weng, «Performance Comparison of Ad-hoc Routing Protocols for

Networks with Node Energy Constraints», EE 360 Class Project, Spring 2000-2001.

[37] A. Huhtonen, «Comparing AODV and OLSR Routing Protocols», session on

Internetworking, April 2004.

[38] Thomas Clausen, «Comparative Study of Routing Protocols for Mobile Ad-Hoc

NETworks», INRIA, Mars 2004.

[39] Lawrence S. Brakmo, Sean W. O’ Malley, and Larry L. Peterson «TCP Vegas: New

Techniques for Congestion Detection and Avoidance», SIGCOMM, 1994.

[40] Network Simulator – NS-2. Available at www.isi.edu/nsnam/ns/

 60

Addit ional Readings

[1] L. Feeny and M. Wrigh and M. Nilsson, «Investigating the energy consumption of a

wireless network interface in an ad hoc networking environment», in Proceedings

INFOCOM 2001, Anchorage, Alaska, 2001.

[2] M. Zorzi, M. Rossi, and G. Mazzini, «Throughput and energy performance of TCP on a

wideband cdma air interface», in journal of wireless communications and mobile

computing, Wiley 2002, 2002.

[3] S. Bansal et al., «Energy Efficiency and Throughput for TCP Traffic in Multi-Hop

Wireless Networks», in Proceedings INFOCOM 2002, New York, NY, 2002.

[4] H. Singh and S. Singh, «Energy consumption of TCP Reno, New Reno, and SACK in

multi-hop wireless networks», in ACM SIGMETRICS 2002, June 15-19 2002.

[5] V. Tsaoussidis et al., «Energy/Throughput Tradeoffs of TCP Error Control Strategies»,

proc. 5th IEEE Symp. Computers and Communications, France July 2000.

[6] M. Mathis, J. Mahdavi, S. Floyd, and A. Ramanow, «RFC 2018: TCP Selective

Acknowledgement Options», http://www.ietf.org/rfc/rfc2018.txt, October 1996.

[7] J. Postel, «RFC 793: Transmission Control Protocol», http://www.ietf.org/rfc/rfc793.txt,

September 1981.

[8] S. Floyd, T. Henderson, «RFC 2582: The New Reno Modification to TCP’ s Fast

Recovery Algorithm», http://www.ietf.org/rfc/rfc2582.txt, April 1999.

[9] G. Holland and N. Vaidya, «Analysis of TCP Performance over Mobile Ad Hoc

Networks», 5th annual ACM/IEEE International Conference on Mobile Computing and

Networking (MobiCom’ 99), Seattle, Washington, August 1999.

[10] W. Stevens, «RFC 2001: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and

Fast Recovery Algorithms», http://www.ietf.org/rfc/rfc2001.txt, January 1997.

[11] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, «RFC 2883: An Extension to the Selective

Acknowledgement (SACK) Option for TCP», http://www.ietf.org/rfc/rfc2883.txt, July

2000.

[12] Robert R. Chodorek, and A. Glowacz, «Behaviour of TCP Westwood in Wireless

Networks», Cracow, December 5-7, 2002, ATAMS 2002.

 61

[13] C. Casetti, M. Gerla, Scott S. Lee, S. Mascolo, and M. Sanadidi, «TCP with Faster

Recovery», Proceedings of the 7th annual international conference on Mobile Computing

and Networking, Rome, Italy, p. 287-297, 2001.

[14] M. Gerla, Y. Sanadidi, R. Wang, C. Casetti, S. Mascolo, and A. Zanella, «TCP

Westwood: Congestion Window Control Using Bandwidth Estimation», proc. Of IEEE

Globecom 2001, S. Antonio, Texas, Dec. 2001.

[15] Joel Cannau, «Evaluation de performance d’ une amélioration de TCP Westwood», en vue

de l’ obtention du Diplôme d’ études approfondies en sciences appliquées, Année

Académique 2002-2003.

[16] S. Senouci, «Application de techniques d’ apprentissage dans les réseaux mobiles», Thèse

de Doctorat de l’ Université de Pierre et Marie Curie, PARIS, Octobre 2003.

