
Chapter 11 

Learning Techniques in a Mobile Network  

11.1. Introduction 

Because of the current evolution of society, people are increasingly on the move 
and need to communicate during their travels. This phenomenon has triggered 
greater demand and studies oriented towards the development of very sophisticated 
systems in order to respond to new user requirements. These requirements have 
indeed changed: if originally only voice was needed, wireless transmission demand 
providing reliable high definition sound, image and even high quality video 
communications has increasingly become popular with a large number of users. 
These users hope for mobility to be completely transparent in order to take 
advantage of performances similar to those from wired networks, despite the 
bandwidth greed of these new services. 

Cellular systems are without a doubt those having experienced the strongest 
growth these last few years. The geographical zone served by a cellular network is 
divided into small surfaces called cells. Each of them is covered by a transmitter 
called “base station” (BS). Bandwidth in this type of network is divided into a 
separate group of radio channels defined by the access technique used. These 
channels can be used simultaneously as long as acceptable radio signal quality is 
maintained. This division can be done with different access techniques such as 
FDMA (frequency-division multiple access), TDMA (time-division multiple access), 
CDMA (code-division multiple access) or any combination of these methods 
[CAL 92, GIB 96, AGH01]. What is left now is to define the way in which these 
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channels are attributed to cells. There are two main methods: FCA (fixed channel 
allocation), where each cell has a specific number of channels and DCA (dynamic 
channel assignment) where all channels are grouped in a common pool (or group) 
and are dynamically assigned to cells [KAT 96]. In FCA or DCA type systems, a 
free channel not violating the constraint of channel reuse1 is allocated to each user. 
However, when the user goes from one cell to another, he must request a new free 
channel in the destination cell. This event, called intercellular transfer or “handoff“, 
must be transparent to the user. If the destination cell has no available channel, the 
call is disconnected. One of the great challenges for this type of network is 
managing this user mobility during a communication. In fact, the availability of 
radio resources for the duration of communication is not necessarily guaranteed and 
these users can experiment communication degradation or even break during 
intercellular transfer.  

One of the major concerns during cellular network design is break probability 
decrease. In fact, from a user viewpoint, it is much more unpleasant than a 
connection failure. This is all the more important because cell size keeps decreasing 
in order to respond to cellular network growth, which considerably increases the 
number of intercellular transfers. Thus, since radio resource is a scarce resource, it is 
imperative to use it to the maximum, particularly in the case of a multiservice 
cellular network supporting several traffic classes where each one requires a 
different QoS level. For an administrator, it is always preferable to block a call from 
a lower priority service class (data, for example) and to accept another call with a 
higher priority service class (voice, for example). Consequently, a good call 
admission control (CAC) policy is certainly vital to maximize the usefulness of all 
these radio resources. To reach this objective, it is also necessary to find a good 
allocation method of all bandwidth available to all cells. These new mechanisms 
(CAC, dynamic resource allocation) must also handle frequent traffic conditions 
changes in cellular networks. 

The objective of this chapter is to prove that it is possible to use techniques from 
the world of artificial intelligence (AI) and more specifically learning techniques in 
order to develop robust and efficient mechanisms to solve the problems encountered 
in cellular networks. These mechanisms must also exploit experience and 
knowledge which could be acquired during network operation. 

In order to do this, we have developed new call admission control mechanisms in 
a cellular network considering both channel allocation diagrams: fixed (FCA) and 
dynamic (DCA). We have also developed a new dynamic resource allocation 
mechanism for choosing the best channel among all available channels in the 
                                    
1 A channel can be used in many cells as long as the interference constraint is respected. 



Learning Techniques in a Mobile Network     269 

common pool, with the objective of maximizing the usage rate of all channels. 
These solutions are obtained by using the reinforcement learning Q-learning 
algorithm [WAT 89, WAT 92]. 

The rest of the chapter is organized as follows: section 11.2 briefly presents the 
notion of learning by emphasizing reinforcement learning and its application in 
telecommunications networks; section 11.3 presents a new call admission control 
method in cellular networks based on reinforcement learning; section 11.4 discusses 
a new dynamic radio resource allocation policy in cellular systems, also based on 
reinforcement learning; finally, section 11.5 concludes this chapter. 

11.2. Learning 

The term learning designates the capability to organize, develop and generalize 
knowledge for future use. It is the capability to take advantage of experience to 
improve problem resolution. Depending on the type of information available, two 
main approach categories can be observed. The first one, qualified as unsupervised 
learning, attempts to group objects into classes, relying on similarities. The second 
approach, i.e. supervised learning, is based on a learning group made up of objects 
where the class is already known. 

11.2.1. Unsupervised learning 

Unsupervised learning, also called learning from observation, consists of 
defining a classification from a group of objects or given situations. We use a mass 
of indistinct data and we wish to know if they have any group structure. The 
objective is to identify future data trends to be grouped into classes. This type of 
learning called clustering is found in automatic classification and in digital 
taxonomy. It searches for consistencies among a group of examples, without 
necessarily being guided by the use of acquired knowledge. It groups these 
examples in such a way that examples within one group are close enough and 
examples of different groups are different enough.  

11.2.2. Supervised learning 

In this type of learning, a teacher (or supervisor, hence the name supervised 
learning) provides either the action which should be executed, or an error gradient. 
In both cases, the teacher provides a controller with an indication of the action that it 
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should generate in order to improve its performance. The use of this approach 
presupposes the existence of an expert able to provide a group of examples, called 
learning base, which is made up of correct associated situations and actions. These 
examples must be representative of the task to accomplish.  

One of the variations of supervised learning, in which a “critique” of the 
calculated response is provided to the network, is called reinforcement learning 
(RL). This algorithm variation, explained below, has appeared as the most adapted 
to solve problems related to cellular networks and treated in this chapter. 

11.2.3. Reinforcement learning 

Reinforcement learning (also called semi-supervised learning) is a variation of 
supervised learning [SUT 98]. In contrast with the supervised approach, the teacher 
agent in reinforcement learning has a role of evaluation and not instruction. It is 
generally called critique. The role of critique is to provide a measure indicating 
whether the action generated is appropriate or not. The objective is to program an 
agent with the help of a penalty/reward evaluation without having to specify how the 
task must be accomplished. In this context, we must indicate to the system what goal 
to reach and the system must learn, by a series of trials and errors (in interaction 
with the environment), how to reach the set goal. 

The components of reinforcement learning are the “apprentice” agent, its 
environment and the task to carry out (see Figure 11.1). The interaction between 
agent and environment is continuous. On the one hand, the agent’s decision process 
chooses the actions based on situations perceived from its environment. On the other 
hand, these situations are influenced by these actions. Each time the agent 
accomplishes an action, it receives a reward. This reward is a scalar value indicating 
the consequence of the agent’s action.  

 

Figure 11.1. Agent-environment interaction 
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In a more formal way, we can designate s (∈ S, a finite group) as a 
representation of the actual environment state, a (∈ A, a finite group) as the action 
chosen and r (∈ R, a finite group) as the reward received. The interaction between 
agent and environment continuously consists of the following sequences: 

– the agent observes the current state of environment st ∈ S; 

– based on state st, the agent makes a decision by executing an action at ∈ A; 

– the environment then makes a transition towards another state st+1 = s’∈A 
following probability Pss’(a); 

– the agent instantly receives a specific revenue rt = r(st,at) indicating the 
consequence of this decision. 

The agent’s decision process is called policy and it is a function of the group of 
states to the group of actions (π: S → A). The agent must learn a policy π, which 
makes it possible to choose the next action at = π(st) to execute, based on the current 
state st. The interaction between agent and environment is continuous and the 
apprentice agent modifies its policy based on its experience and its goal of 
maximizing the accumulation of rewards in time. This accumulation Vπ(st) achieved 
by following an arbitrary policy π, from an initial state st, is defined as follows:  

tV (s) E r(s , (s )) s st t 0
t 0

∞⎧ ⎫⎪ ⎪π = γ π =∑⎨ ⎬
⎪ ⎪=⎩ ⎭

 [11.1] 

where E designates operator hope and factor 0 ≤ γ ≤ 1 represents the temporal 
propagation constant. 

For the agent, the objective is to maximize this sum of received reinforcements 
and its learning is done by several experiments. The agent is guided in this by 
different algorithms presented below. 

11.2.3.1. Resolution methods  

There are three fundamental method classifications for problem resolution of 
reinforcement learning: dynamic programming (DP), Monte Carlo (MC) methods 
and learning by temporal differences (TD) [COR]. Each class has its advantages and 
drawbacks. DP has well known/studied mathematical foundations but requires a 
complete and precise environment model. MC methods do not require models and 
are conceptually simple, but not adapted to an incremental step-by-step calculation. 
Finally, the TD approach combines the first two methods and uses in this way the 
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best part of each one. This approach does not require a model and is incremental. 
These methods also distinguish themselves in terms of convergence speed and 
efficiency. Below we describe two methods of learning resolution by temporal 
differences: Q-learning and Sarsa. 

11.2.3.1.1. Q-learning algorithm 

Developed in 1989 by Watkins [WAT 92, WAT 89], Q-learning is part of 
reinforcement learning methods without model since the object is to learn by 
experimenting actions to accomplish according to the current state. The agent’s goal 
is to learn a π: S → A policy which makes it possible to choose the next action 
at = π(st) to accomplish based on current state st.  

For each policy π, we associate a value Qπ(s, a), that we will call its Q-value and 
represents the average expected gains if the action has been executed when the 
current system state is s and that π is then adopted as decision policy. Optimal policy 
π*(s) is the policy maximizing the accumulation of revenues rt = r(st, at) received 
after an infinite time. Q-learning algorithm’s goal is to search for an approximation 
for Q*(s, a) = Qπ*(s,a) in a recursive manner with only quadruple (st, at, s’t, rt) as 
available information. This information contains the state at moment t (st), state at 
moment t+1 (s’t = st+1), the action taken when the system is at state st (at) and the 
revenue received at moment t (rt) following the execution of this action. 

Q-values are updated recursively at each transition by using the following 
formula [11.2]: 

Q (s,a) Q (s,a), if s s and a at t t t tQ (s,a)t 1 Q (s,a), otherwiset

+ α ∆ = =⎧
= ⎨+

⎩
 [11.2] 

where: 

Q (s,a) r max Q (s ' , b) Q (s,a)t t t t tb

⎧ ⎫⎡ ⎤∆ = + γ −⎨ ⎬⎣ ⎦⎩ ⎭
 [11.3] 

from where we obtain the algorithm summed up in Figure 11.2. 
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Initialize Q0(s, a) to random values 
Choose a starting point s0 
as long as the policy is not good enough 
choose at according to values Qt(st,.) 
at = f(Qt(st,.)) 
obtain in return: st+1 (s’) and rt 
update Qt+1(st, at) by using formula [11.2] 
End as long as 

Figure 11.2. Q-learning algorithm 

It is then necessary to set the ratio α in order to gradually establish the policy 
learned. Factor γ modulates the importance of the rewards expected. In [WAT 92], 
the authors demonstrate that if each pair (s,a) is infinitely visited and learning rate α 
leans toward zero, Qt(s,a) converges to Q*(s,a) with a probability of 1 when t → ∞. 
The best policy will then be that with the highest Q-value:  

*(s) arg max Q*(s,a)
a A(s)

π =
∈

 

The action choice (function f) is not described. It is possible to imagine different 
selection scenarios (exploration), for example, the action least used, or the one 
which returns the highest Q-value. In our studies, we have tested a group of 
exploration methods, such a ∈-directed method, the Boltzmann method and even 
random strategies that we will discuss in more detail later. 

11.2.3.1.2. Sarsa algorithm 

Sarsa [SUT 98] is another algorithm for the resolution of a reinforcement 
learning problem. Contrary to Q-learning, during Q-values update the policy used 
for choosing the action at moment t is similar to that used for choosing action b at 
moment t + 1, or:  

∆Qt(s,a) = { rt + γ Qt(s’t,b) } – Qt(s,a) 

The exploration policy used can be ∈-directed, for example. If each pair (s,a) is 
infinitely visited, Sarsa converges to the best policy. 

11.2.3.2. Application of reinforcement learning techniques – state of the art 

Below, we will list a few studies relative to traditional applications (robotics, 
games, etc.) and to some network applications (routing, CAC, etc.) using 
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reinforcement learning as their solution. Unfortunately, there are not many studies 
relative to telecommunications network applications.  

The first studies were achieved in the context of learning two-player games 
(checkers, backgammon, etc.). The other main reinforcement learning field is 
autonomous robotics, which is a scarcely addressed field in supervised learning 
because of the difficulty of modeling the real world with enough precision to 
account for the heterogenity of sensors, ambient noise and the robot-external world 
dynamic. In [SRI 00], the authors propose a multi-agent system (MAS) able to make 
economic decisions such as set prices in a competitive market context. They 
demonstrate that with Q-learning, the system is able to find the best price policy and 
to lessen the “price war” phenomena between different suppliers. 

Studies [BOY 94, MAR 00, MAR 98] are routing propositions in 
telecommunications networks by using reinforcement learning techniques as a 
solution. The authors in [BOY 94] propose an extension of Bellman-Ford distance 
vector algorithm (DBF) which they have called Q-routing. The reinforcement 
learning module is integrated into each node of a switched network. The routing 
policy attempts to find the best adjacent node to reach its destination with minimum 
“transmission time”.  

In [SEN 03c], we have proposed an ad hoc routing protocol Q-AOMDV based 
on one of the most important current ad hoc routing protocols, i.e. AODV (ad hoc 
on demand distance vector) [MANET]. The objective with Q-AOMDV is to balance 
energy consumption throughout the network by transmitting data traffic in different 
routes. The choice for the best route is achieved by using an adaptation of the 
Q-routing algorithm. Let us recall that AODV is an on demand ad hoc routing 
protocol, which only maintains one route towards destination. Contrary to standard 
AODV, results show that Q-AOMDV balances energy consumption over the whole 
ad hoc network while avoiding partitioning of the network into separate sub-
networks. 

A particularly interesting proposition for resource allocation has been proposed 
by Nie and Haykin [NIE 99]. We especially focus on this proposition because it is 
the subject of an example addressed in section 11.4. The authors propose to solve 
the dynamic resource allocation problem in a GSM type cellular network (voice 
service only) by using Q-learning. 

Finally,  CAC problems in fixed networks and using reinforcement learning have 
been addressed in a few studies [MAR 00, MAR 98, MAR 97, RAM 96, MIT 98]. 
The authors of [MAR 00], for example, propose to solve this problem in a services 
integration network such as ATM (asynchronous transfer mode). The authors put 
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themselves in the context where a service provider wants to sell network resources 
to maximize his revenues. 

11.3. Call admission control  

This section presents an approach which enables the resolution of the call 
admission control problem in FCA cellular networks supporting several traffic 
classes.  

We recall that a geographical zone served by a mobile network is divided into 
cells sharing a frequency band in two methods: FCA and DRA [KAT 96]. In FCA, a 
fixed group of channels is allocated to each cell and a channel is allocated to each 
user. We also recall that one of the major concerns during mobile network design is 
the decrease of break probability during intercellular transfer. 

Guard channel techniques decrease the probability of communication break by 
reserving channels for the exclusive use of handoffs in each cell [ZHA 89, KAT 96]. 
If these techniques are easy to size when we consider one traffic class (one 
telephone call), they become much more complicated to optimize and are less 
optimal in a multiclass traffic context.  

In fact, in a multiclass traffic context, it is sometimes preferable to block a low 
priority class call and accept another call belonging to a higher priority class. Call 
admission control presented in this section enables this type of mechanism. It is 
obtained by using the reinforcement learning algorithm Q-learning which was 
presented in the previous section. 

11.3.1. Problem formulation 

We will focus on a simple FCA cell with N available channels and two2 traffic 
classes C1 and C2. First class calls require one channel only, whereas second class 
calls require two channels. This cellular system can be considered as a discrete event 
system. The main events which can occur in a cell are incoming and outgoing calls. 
These events are modeled by stochastic variables with appropriate distributions. In 
particular, new incoming calls and handoffs are Poisson-ruled. Time spent on each 
call is exponentially distributed. Calls arrive in the cell and leave, either by 
executing a handoff to another cell, or by terminating normally. The network will 
then have to choose whether to accept or reject these connection requests. In return, 
                                    
2 The idea can easily be extended to several traffic classes. 
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it retrieves revenues received from accepted clients (gains), as well as all revenues 
received from rejected clients (losses). The objective of the network administrator is 
to find a CAC policy which will maximize long-term gains and reduce handoff 
blocking probabilities and losses. 

We have chosen the description of all states as s = ((x1, x2), e), where xi is the 
number of current class Ci calls and e represents a new incoming call or a handoff 
request in the cell. When an event occurs, the agent must choose one of the possible 
actions A(s) = {reject, accept}. At the end of a call, no measure need be taken. 

For each type of call, revenue is associated with it. Since the main goal of the 
network administrator is to decrease handoff blocking probabilities, relatively high 
revenue values are assigned to them. Revenue values for class C1 calls are higher 
than those for class C2 calls, since C1 is presumed higher priority than C2. 

The agent must determine a policy for call acceptance with the only knowledge 
being the state of the network. This system constitutes an SMDP with a finite set 
S = {s = (x, e)} as space of states and a finite set A = {0,1} as space of possible 
actions where Q-learning is the ideal solution.  

11.3.2. Implementation of algorithm 

After the call admission control problem formulation in the form of an SMDP, 
we will now describe two Q-learning algorithm implementations able to solve the 
problem. We have named them TRL-CAC (table reinforcement learning CAC) and 
NRL-CAC (neural network reinforcement learning CAC). TRL-CAC uses a simple 
table to represent function Q (the set of Q-values). On the other hand, NRL-CAC 
uses a network of multilayer neurons [MIT 97]. The differences between these two 
algorithms (TRL-CAC and NRL-CAC) are explained in terms of memory size and 
calculation complexity.  

Since the approach uses a table, TRL-CAC is the simplest and most efficient 
method. This approach leads to an exact calculation and it is fully compliant with 
structures assumptions achieved in order to prove Q-learning algorithm 
convergence. However, when the group of state-action pairs (s, a) is large or when 
incoming variables (x, e) constituting state s are continuous variables, the use of a 
simple table becomes unacceptable because of the huge storage requirements. In this 
case, some approximation functions, such as state aggregation, neuron networks 
[MIT 97, MCC 43] or even regression trees [BRE 84] can be used efficiently. The 
neuron network used in NRL-CAC is made up of 4 entries, 10 hidden units and one 
output unit.  



Learning Techniques in a Mobile Network     277 

11.3.2.1. Implementation 

When a call arrives (new call or handoff), the algorithm determines if quality of 
service is not violated by accepting this call (by simply verifying if there are enough 
channels available in the cell). If this quality of service is violated, the call is 
rejected; if not the action is chosen according to the formula: 

a A(s)
a arg max Q*(s,a)

∈
=  [11.4] 

where A(s) = {1 = accept, 0 = reject}. 

In particular, [11.4] implies the following procedures: when a call arrives, 
acceptance Q-value and call reject Q-value are determined from the table (TRL-
CAC), or from the neuron network (NRL-CAC). If the reject has a higher value, the 
call is then rejected. Otherwise, the call is accepted. 

In these two cases, and to find out optimal values Q*(s,a), the function is updated 
at each system transition of state s to state s’. For both algorithms, this is done in the 
following manner: 

– TRL-CAC: [11.2] is the formula used to update the appropriate Q-value in the 
table; 

– NRL-CAC: when a network of neurons is used to store function Q, a second 
learning procedure is required to find out neuron network weights. This procedure 
uses back propagation (BP) algorithm [MIT 97]. In this case, ∆Q defined by formula 
[11.3] is used as error signal which is back propagated in the different neuron 
network layers. 

11.3.2.2. Exploration 

For a correct and efficient execution of the Q-learning algorithm, all potentially 
significant pairs of state-action (s, a) must be explored. For this, during a long 
enough learning period, the action is not chosen from formula [11.4], but from the 
following formula [11.5] with a probability of exploration ∈: 

a A(s)
a arg min visits(s, a)

∈
=  [11.5] 

where visits(s, a) indicate the number of times (s, a) a configuration has been visited. 
This heuristic, called ∈-directed, significantly accelerates Q-value convergence. 
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These values are first calculated using this heuristic during a learning period. These 
values will then be used to initialize Q-values in both CAC algorithms. 

11.3.3. Experimental results 

In order to evaluate the advantages of our algorithms, we have used a discrete 
event simulation to represent the cellular network. Cell FCA has N = 24 channels. 
The temporal propagation constant γ has been set to 0.5 and exploration probability 
∈ to 1. Performance criteria used to compare these algorithms are: (i) gains, (ii) 
losses and (iii) break probabilities. Gains represent the sum of revenues from the 
acceptance of new calls or handoffs for both traffic classes in the cell. As for losses, 
they represent the sum of revenues from the rejection of new calls or cellular 
transfer failure. Break probabilities for all calls taken together (C1 and C2) have 
been calculated by using the following formula:  

HO
number of system handoff failuresP
number of system handoff attempts

=  [11.6] 

As for break probabilities of traffic classes, they have been calculated for each 
traffic class Ci by using the following formula:  

i
i

HO(C )
i

number of system handoff failures for type C
P

number of system handoff attempts for type C
=  [11.7] 

We have compared our policies to the one we called greedy policy [TON 00] 
(policy which accepts a new call or a handoff call if capacity constraint is not 
violated by accepting this call). We have also compared them to guard channel 
mechanism. The guard channel mechanism enables the sharing of cell capacity 
between new calls and handoff calls by giving handoff calls higher priority. This is 
done by reserving, in each cell, channels for the exclusive use of handoffs (guard 
channels). The number of reserved channels for handoff calls is a very important 
parameter in this type of mechanism. In a multiservice context, the question is: how 
many channels can be reserved for handoffs for each of the traffic classes in order to 
maximize revenues? To answer this question, we have developed a traditional 
mathematical model where a cell is represented by a traditional multiserver 
M/M/N/N-type queue where each server represents a communication channel. 
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We have carried out a set of simulations including: (i) constant traffic load for all 
traffic classes, (ii) variable traffic classes and (iii) variable traffic load in time. We 
will not present all the results obtained, but for more information see [SEN 03a, 
SEN 03b]: 

– constant traffic load: the first experiment considers a constant traffic load for 
both C1 and C2 classes. The simulation parameters used are the same as those used 
during the learning period; 

– variable traffic load: in this second experiment we have used the same policies 
as the previous experiment (constant traffic load), but with six different traffic loads 
(for both C1 and C2 classes); 

– variable traffic load in time: in this last experiment we have again used the 
same policies as the first experiment, but with a variable traffic load in time. Indeed, 
traffic load in a cellular system is variable in one day. We have used the traffic 
model presented in Figure 11.3 describing the variation of incoming rates during a 
working day. Rush hours appear at 11am and 4pm. 

 

Figure 11.3. Traffic model for a working day 

For all these experiments, the results have confirmed that the algorithms 
proposed are more efficient than the other heuristics for all traffic loads, in particular 
when traffic load is high. For example, Figure 11.3 shows simulation results with the 
assumption that both traffic classes used the same traffic model. Call blocking 
probabilities were calculated on an hourly basis. We have compared our algorithms 
to: guard channel with fixed thresholds (these thresholds have been calculated for a 
given constant traffic load) and guard channel with optimized thresholds (these 
thresholds have been calculated for each traffic load value). Improvements to 
proposed algorithms are apparent compared to greedy policy, particularly during 
traffic peaks (around 11am and 4pm). We notice that guard channel with optimized 
thresholds gives better results than the two algorithms based on Q-learning. On the 
other hand, this method presumes that optimized thresholds are calculated offline for 



280     Autonomic Networks 

each traffic load value. On the contrary, admission control algorithms based on 
Q-learning (TRL-CAC and NRL-CAC) have adaptation and generalization 
capabilities, so optimal Q-value values are not recalculated for each traffic load. 

 

Figure 11.4. Probability of handoff blocking with a variable traffic load in time 

11.4. Dynamic resource allocation  

In this section, we will present a new mechanism enabling the resolution of 
dynamic resource allocation, also taking into account call admission control in DCA 
systems supporting several traffic classes. 

Let us recall that in dynamic resource allocation (DRA) strategies, all available 
channels in the system are put in a common pool which can be used by all base 
stations [KAT 96]. During a communication request, a cell chooses a common pool3 
channel, which will be restored at the end of the call.  

Different dynamic resource allocation algorithms have been compared in terms 
of performance, flexibility and complexity. One of the most widely used strategies 
in other works is a class of algorithms called “exhaustive searching DRA” [NIE 99, 
ZHA 89, COX 72, DEL 93, DIM 93, SIV 90]. In this type of algorithm, a reward 
(cost) is associated with each available channel. When a new call arrives, the system 
exhaustively searches for a channel with the highest reward (lowest cost) and 
assigns it to the call. Most of these propositions do not consider CAC policies as a 
method of preventing congestion [LEV 97]. The relation between resource 

                                    
3 While respecting signal/interference relation C/I. 
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allocation and admission control has been previously studied [NAG 95, TAJ 88, 
YAN 94].  

This section presents a new approach to solve the dynamic resource allocation 
problem, also considering call admission control in DRA systems. For reasons 
mentioned in the previous section, call admission control is vital when the network 
supports several classes of clients. Allocation policies are obtained by using the 
reinforcement learning algorithm Q-learning. The main functions of the proposed 
mechanism called Q-DRA presented in this section are: accepting clients and 
rejecting others, and allocating the best available channel for accepted clients. The 
goal is to maximize accumulation of received revenue through time. 

We will now briefly describe the problem formulation by a SMDP and the 
implementation of the Q-learning algorithm capable of resolving this SMDP.  

11.4.1. Problem formulation 

This contribution is an extension of the study by Nie and Haykin [NIE 99] and is 
part of exhaustive searching DRA algorithms. We are considering the resolution of 
the dynamic resource allocation problem as well as the call admission control 
problem in a cellular network. This network contains N cells and M channels 
available which are maintained in a common pool. It supports two traffic classes 
(contrary to [NIE 99] where only one traffic class – telephone call – was taken into 
account). Each channel can be temporarily allocated to any cell, as long as the 
constraint on reuse distance is satisfied (a given signal quality must be maintained).  

The calls arrive in the cell and leave based on appropriate distributions. The 
network will then choose to accept or reject these connection requests. If the call is 
accepted, the system allocates one of the available channels to it from the common 
pool. The goal of the network administrator is to find a dynamic resource allocation 
policy capable of maximizing long-term gains and decrease probabilities of handoff 
blocking (contrary to [NIE 99] which does not give any priority to handoff calls).  

We have chosen the group of states as being {s = (i, D(i), (x1, x2), ei)}, where 
D(i) represents the number of available channels in cell i where event ei has 
occurred, xk represents the number of current calls from class Ck and ei indicates the 
arrival of a new call or a handoff call in a cell i. When an event occurs, the agent 
must choose one of the possible actions A(s) = {0 = reject} ∪ {1,…, M}. When a 
call ends, no measure has to be taken. The agent will have to determine the policies 
for accepting or rejecting a call and, when accepted, to allocate the channel that will 
enable the maximization of gain accumulation received by only knowing the current 
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network state s. This system constitutes an SMDP which has as space of states a 
finite group S = {(i, D(i), x, e)} and as space of possible actions a finite group 
A = {0, 1…, M}. The choice of revenues that we have used considers intercellular 
interferences and its consequence is a situation in which channels already used in 
compact cells4 [ZHA 91] will have a better chance of being chosen. Contrary to 
other studies, Q-DRA considers the call type and grants priority to handoff calls. 

11.4.2. Algorithm implementation 

After the problem formulation in the form of SMDP, we will describe 
implementation of the Q-learning algorithm capable of its resolution. The cellular 
system studied is made up of N = 36 hexagonal cells and M = 70 channels available 
in a common pool. We use a reuse distance D 21R= (R represents cell radius). 
This implies that if a channel is allocated to a cell i, then it cannot be reused in the 
two rows adjacent to i because of co-channel interferences. In this way, there are at 
most 18 cells interfering with each system cell. The temporal propagation constant γ 
has been set to 0.5 and the learning rate α to 0.1. 

In the previous section, we have used a network of neurons to represent Q-values 
(NRL-CAC), but this time we have chosen an approximation based on state 
aggregation. Instead of precisely defining the number of calls xi for each traffic class 
Ci, we have chosen to characterize traffic as follows: low, medium, high. The space 
of states is thus reduced and a simple table can be used to represent aggregated 
states. Because identical states (or states with a similar number of current calls) have 
the same Q-values, performance loss linked to aggregation becomes insignificant 
[TON 99]. 

11.4.2.1. Implementation 

When a call arrives (new call or handoff call) in cell i, the algorithm determines 
if quality of service is not violated by accepting this call (by simply verifying if 
there are free channels in the common pool). If this quality of service is violated, the 
call is rejected, otherwise the action is chosen depending on the following 
expression: 

a A(s)
a arg max Q *(s,a)

∈
=  [11.8] 

                                    
4 Compact cells are cells with an average minimum distance between co-channel cells. 
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where A(s) = {0 = reject, 1, 2…, M}. 

Formula [11.8] implies the following procedures. When there is a call connection 
attempt in cell i, Q-value of reject (a = 0) as well as acceptance Q-values 
(a = 1, 2…, M) are determined from the Q-value table. Acceptance Q-values include 
the different Q-values corresponding to choices of each channel a (a = 1, 2…, M) to 
serve the call. If the rejection has the highest value, then the call is rejected. 
Otherwise, if one of the acceptance values has the highest value, the call is accepted 
and channel a is allocated to it. 

11.4.2.2. Exploration 

For a correct and efficient execution of Q-DRA algorithm, the action is not 
chosen from formula [11.4], but based on a Boltzmann distribution [WAT 89] 
during a relatively long learning period. The idea is first to favor exploration (the 
probability of executing actions other than those with the highest Q-value) by using 
all possible actions with the same probability. Then the goal is to gradually move 
towards the use of the action with the highest Q-value. The values learned will be 
used later to initialize Q-values in Q-DRA. 

11.4.3. Experimental results 

In order to study Q-DRA performances, a group of simulations was completed. 
We have compared Q-DRA to greedy-DRA5 policy [TON 99], as well as to the 
DRA-Nie algorithm [NIE 99]. Algorithm performances have also been evaluated in 
terms of gains, losses, as well as handoff blocking probabilities. A group of 
simulations was carried out including: a case of traffic load evenly distributed over 
all cells, a case of load not evenly distributed, a case of variable traffic load in time 
and a case of equipment failure. We will not present all the results obtained (see 
[SEN 03a, SEN 03c] for more information): 

– even traffic distribution: the first experiment considers a constant traffic load 
in the 36 cells for both traffic classes. We have used policies learned during the 
learning period, but with five different traffic loads (for both C1 and C2 classes); 

– uneven traffic distribution: in this second experiment, we have used policies 
learned during the learning period but traffic loads in this case are no longer evenly 
distributed over the 36 cells. The average traffic load considered was of 7.5 Erlangs; 

                                    
5 Greedy-DAC: policy which randomly chooses a channel to serve a call with no measure of 
interference. Each M channel has the same probability to be chosen for serving the new call. 



284     Autonomic Networks 

– variable traffic load in time: in the third experiment, we wanted to test Q-DRA 
performances when traffic load changes in time; 

– equipment failure in a DRA system: in the last experiment, we have simulated 
equipment failure due to some channels becoming temporarily unavailable. At the 
beginning of the simulation there are 70 available channels in the system. However, 
between 10am and 3pm, we have temporarily suspended 0, 3, 5 and 7 channels.  

For all these experiments, results show the possibilities that reinforcement 
learning offers in order to learn the best admission and dynamic resource allocation 
policy. Policy results using Q-DRA indicate significant improvements compared to 
other policies. These improvements are also slightly better than those from DRA-
Nie. Q-DRA has an aptitude for generalizing and adapting to changes in traffic 
conditions. For example, Figure 11.9 shows the impact of channel failure over call 
break probabilities by using the Q-DRA algorithm. We notice that Q-DRA has a 
certain robustness against equipment failure situations and easily adapts, especially 
in the case where 3/5 channels have been suspended. 

 

Figure 11.5. Q-DRA performance during channel failure 

11.5. Conclusion 

The first cellular networks were mainly designed to offer telephone service. 
Current cellular systems promise a diversification of services offered with clearly 
superior throughput. Service diversification (voice, SMS, multimedia services, 
Internet access, etc.) requires several levels of quality of service (QoS) to guarantee. 
However, availability of radio resources during a call is not necessarily guaranteed 
and mobile users can also experience service degradation/break. Since 
break/degradation of a current call belonging to a high priority service class is 
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generally less desirable than break/failure of a call connection belonging to a lower 
priority class, new mechanisms of CAC are vital. In fact, efficient call admission 
control is required to prevent this limitation of available radio resources in the 
cellular network radio interface. Efficient management of radio resources through 
dynamic allocation policies also proves to be essential to prevent this type of 
problem. These new mechanisms consist of defining resource management rules for 
each traffic class, for the optimization of usage rate and to satisfy the multiple QoS 
constraints.  

In order to prevent this type of problem, several propositions exist in other works 
and their main goal is to avoid inconveniences caused by communication breaks for 
users. However, we have noticed that these solutions often ignore experience and 
knowledge which could be acquired during real-time system execution.  

The contributions presented in this chapter, relative to cellular networks, are 
intended to benefit from this experience and knowledge in order to optimize 
problems encountered in cellular networks. In the first contribution we needed to 
find a new approach to solve the CAC problem in a multiservice cellular network 
where channels are permanently allocated to cells. For the second, we needed a new 
approach to the dynamic resource allocation problem in a multiservice cellular 
network. This last contribution is ingenious, since it combines optimal CAC policy 
research and the best dynamic channel allocation strategy. These proposed 
mechanisms to solve such complex problems as those linked to cellular networks 
use reinforcement learning as their solution. These are creative and intelligent 
solutions. In addition to the creativity of these mechanisms, the advantages gained 
by using such approaches can be summarized as follows. Contrary to other studies 
(studies based on mathematical models or simulations, presuming fixed 
experimental parameters), these solutions are adaptable to variations of network 
state (i.e. variations of traffic conditions, equipment failure, etc.). Because of their 
distributed nature, they can easily be implemented in each base station, which makes 
them more attractive. Channel admission control and dynamic allocation tasks are 
quickly determined with little calculation efforts. They are obtained by a simple 
specification of preferences between service classes. We have also demonstrated, 
with a large group of experiments, that these mechanisms give the best results 
compared to other heuristics. These are distributed algorithms and signaling 
information exchanged between base stations are almost null. These mechanisms are 
therefore more attractive because of their implementation simplicity.  

Finally, we can say that our main contribution has been to propose and test 
mechanisms for solving problems encountered in mobile networks (CAC and 
dynamic resource allocation). We have been able to demonstrate that it is possible to 
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use techniques from AI and, more specifically, learning techniques in order to 
develop efficient, robust and easy to implement mechanisms. 
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